THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

О чём речь

Появление на Хабре поста о фильтре Маджвика было по-своему символическим событием. Видимо, всеобщее увлечение дронами возродило интерес к задаче оценивания ориентации тела по инерциальным измерениям. При этом традиционные методы, основанные на фильтре Калмана, перестали удовлетворять публику - то ли из-за высоких требований к вычислительным ресурсам, неприемлемых для дронов, то ли из-за сложной и неинтуитивной настройки параметров.

Пост сопровождался весьма компактной и эффективной реализацией фильтра на C. Однако судя по комментариям, физический смысл этого кода, а равно и всей статьи, для кого-то остался туманным. Что ж, признаем честно: фильтр Маджвика - самый замысловатый из группы фильтров, основанных в общем-то на очень простых и элегантных принципах. Эти принципы я и рассмотрю в своём посте. Кода здесь не будет. Мой пост - не рассказ о какой-то конкретной реализации алгоритма оценивания ориентации, а скорее приглашение к изобретению собственных вариаций на заданную тему, которых может быть очень много.

Представление ориентации

Вспомним основы. Чтобы оценить ориентацию тела в пространстве, нужно для начала выбрать какие-то параметры, которые в совокупности однозначно определяют эту ориентацию, т.е. по сути ориентацию связанной системы координат относительно условно неподвижной системы - например, географической системы NED (North, East, Down). Затем нужно составить кинематические уравнения, т.е. выразить скорость изменения этих параметров через угловую скорость от гироскопов. Наконец, нужно ввести в расчёт векторные измерения от акселерометров, магнитометров и т.д. Вот самые употребительные способы представления ориентации:

Углы Эйлера - крен (roll, ), тангаж (pitch, ), курс (heading, ). Это самый наглядный и самый лаконичный набор параметров ориентации: количество параметров в точности равно количеству вращательных степеней свободы. Для этих углов можно записать кинематические уравнения Эйлера . Их очень любят в теоретической механике, но в задачах навигации они малопригодны. Во-первых, знание углов не позволяет напрямую преобразовать компоненты какого-либо вектора из связанной в географическую систему координат или наоборот. Во-вторых, при тангаже ±90 градусов кинематические уравнения вырождаются, крен и курс становятся неопределёнными.

Матрица поворота - матрица размера 3×3, на которую нужно умножить любой вектор в связанной системе координат, чтобы получить тот же вектор в географической системе: . Матрица всегда ортогональна, т.е. . Кинематическое уравнение для неё имеет вид .
Здесь - матрица из компонент угловой скорости, измеренных гироскопами в связанной системе координат:

Матрица поворота чуть менее наглядна, чем углы Эйлера, зато в отличие от них позволяет непосредственно преобразовывать векторы и ни при каком угловом положении не лишается смысла. С вычислительной точки зрения её главный недостаток - избыточность: ради трёх степеней свободы вводятся сразу девять параметров, и все их нужно обновлять согласно кинематическому уравнению. Задачу можно слегка упростить, воспользовавшись ортогональностью матрицы.

Кватернион поворота - радикальное, но очень неинтуитивное средство против избыточности и вырождения. Это четырёхкомпонентный объект - не число, не вектор и не матрица. На кватернион можно смотреть с двух ракурсов. Во-первых, как на формальную сумму скаляра и вектора , где - единичные векторы осей (что, конечно, звучит абсурдно). Во-вторых, как на обобщение комплексных чисел, где теперь используется не одна, а три разных мнимых единицы (что звучит не менее абсурдно). Как кватернион связан с поворотом? Через теорему Эйлера: тело всегда можно перевести из одной заданной ориентации в другую одним конечным поворотом на некоторый угол вокруг некоторой оси с направляющим вектором . Эти угол и ось можно объединить в кватернион: . Как и матрицу, кватернион можно использовать для непосредственного преобразования любого вектора из одной системы координат в другую: . Как видно, кватернионное представление ориентации тоже страдает от избыточности, но намного меньше, чем матричное: лишний параметр всего один. Обстоятельный обзор кватернионов уже был на Хабре. Там шла речь о геометрии и 3D-графике. Нас же интересует ещё и кинематика, поскольку скорость изменения кватерниона нужно связать с измеряемой угловой скоростью. Соответствующее кинематическое уравнение имеет вид , где вектор тоже считается кватернионом с нулевой скалярной частью.

Схемы фильтров

Самый наивный подход к вычислению ориентации - вооружиться кинематическим уравнением и обновлять в соответствии с ним любой понравившийся нам набор параметров. Например, если мы выбрали матрицу поворота, то можем написать цикл с чем-нибудь в духе C += С * Omega * dt . Результат разочарует. Гироскопы, особенно MEMS, имеют большие и нестабильные смещения нуля - в результате даже в полном покое вычисляемая ориентация будет иметь неограниченно накапливающуюся ошибку (дрейф). Все ухищрения, придуманные Махони, Маджвиком и многими другими, не исключая и меня, были направлены на компенсацию этого дрейфа за счёт вовлечения измерений от акселерометров, магнитометров, приёмников GNSS, лагов и т.д. Так родилось целое семейство фильтров ориентации, опирающихся на простой базовый принцип.

Базовый принцип. Для компенсации дрейфа ориентации нужно прибавить к измеренной гироскопами угловой скорости дополнительную управляющую угловую скорость, построенную на основе векторных измерений других датчиков. Вектор управляющей угловой скорости должен стремиться совместить направления измеренных векторов с их известными истинными направлениями.

Здесь заключён совершенно иной подход, чем в построении корректирующего слагаемого фильтра Калмана. Главное отличие именно в том, что управляющая угловая скорость - не слагаемое, а множитель при оцениваемой величине (матрице или кватернионе). Отсюда вытекают важные преимущества:

  • Оценивающий фильтр можно строить для самой ориентации, а не для малых отклонений ориентации от той, которую дают гироскопы. При этом оцениваемые величины будут автоматически удовлетворять всем требованиям, которые налагает задача: матрица будет ортогональной, кватернион - нормированным.
  • Физический смысл управляющей угловой скорости намного яснее, чем корректирующего слагаемого в фильтре Калмана. Все манипуляции делаются с векторами и матрицами в обычном трёхмерном физическом пространстве, а не в абстрактном многомерном пространстве состояний. Это заметно упрощает доработку и настройку фильтра, а в качестве бонуса позволяет избавиться от матриц большой размерности и тяжеловесных матричных библиотек.

Теперь посмотрим, как эта идея реализуется в конкретных вариантах фильтров.

Фильтр Махони. Вся зубодробительная математика оригинальной статьи Махони написана ради обоснования несложных уравнений (32). Перепишем их в наших обозначениях. Если отвлечься от оценивания смещений нуля гироскопов, то останутся два ключевых уравнения - собственно кинематическое уравнение для матрицы поворота (с управляющей угловой скоростью в виде матрицы ) и закон формирования этой самой скорости в виде вектора . Предположим для простоты, что ни ускорений, ни магнитных наводок нет, и благодаря этому нам доступны измерения ускорения свободного падения от акселерометров и напряжённости магнитного поля Земли от магнитометров. Оба вектора измеряются датчиками в связанной системе координат, а в географической системе их положение заведомо известно: направлен вверх, - на магнитный север. Тогда уравнения фильтра Махони будут выглядеть так:

Посмотрим внимательно на второе уравнение. Первое слагаемое в правой части - это векторное произведение. Первый множитель в нём - измеренное ускорение свободного падения, второй - истинное. Поскольку множители обязаны быть в одной системе координат, то второй множитель преобразуется к связанной системе умножением на . Угловая скорость, построенная как векторное произведение, перпендикулярна плоскости векторов-множителей. Она позволяет поворачивать расчётное положение связанной системы координат, пока векторы-множители не совпадут по направлению - тогда векторное произведение обнулится и поворот прекратится. Коэффициент задаёт жёсткость такой обратной связи. Второе слагаемое выполняет аналогичную операцию с магнитным вектором. По сути фильтр Махони воплощает хорошо известный тезис: знание двух неколлинеарных векторов в двух разных системах координат позволяет однозначно восстановить взаимную ориентацию этих систем. Если векторов больше двух, то это даст полезную избыточность измерений. Если вектор всего один, то одну вращательную степень свободы (движение вокруг этого вектора) зафиксировать не удастся. Например, если дан только вектор , то можно скорректировать дрейф крена и тангажа, но не курса.

Разумеется, в фильтре Махони необязательно пользоваться матрицей поворота. Есть и неканонические кватернионные варианты.

Виртуальная гироплатформа. В фильтре Махони мы прилагали управляющую угловую скорость к связанной системе координат. Но можно приложить её и к расчётному положению географической системы координат. Кинематическое уравнение тогда примет вид

Оказывается, такой подход открывает путь к очень плодотворным физическим аналогиям. Достаточно вспомнить то, с чего начиналась гироскопическая техника, - курсовертикали и инерциальные навигационные системы на основе гиростабилизированной платформы в кардановом подвесе.


www.theairlinepilots.com

Задачей платформы там была материализация географической системы координат. Ориентация носителя измерялась относительно этой платформы датчиками углов на рамах подвеса. Если гироскопы имели дрейф, то вслед за ними дрейфовала и платформа, и в показаниях датчиков углов накапливались ошибки. Чтобы эти ошибки устранить, вводилась обратная связь от акселерометров, установленных на платформе. Например, отклонение платформы от горизонта вокруг северной оси воспринималось акселерометром восточной оси. Этот сигнал позволял задать управляющую угловую скорость , возвращающую платформу в горизонт.

Теми же самыми наглядными понятиями мы можем пользоваться и в своей задаче. Выписанное кинематическое уравнение нужно тогда читать так: скорость изменения ориентации представляет собой разность двух вращательных движений - абсолютного движения носителя (первое слагаемое) и абсолютного движения виртуальной гироплатформы (второе слагаемое). Аналогию можно распространить и на закон формирования управляющей угловой скорости. Вектор олицетворяет показания акселерометров, якобы стоящих на гироплатформе. Тогда из физических соображений можно написать:

К точно такому же результату можно было бы прийти и формальным путём, сделав векторное перемножение в духе фильтра Махони, но теперь уже не в связанной, а в географической системе координат. Только нужно ли это?

Первый намёк на полезную аналогию платформенной и бесплатформенной инерциальной навигации появляется, видимо, в древнем патенте «Боинга». Затем эта идея активно разрабатывалась Салычевым, а в последнее время - и мной тоже. Очевидные преимущества такого подхода:

  • Управляющую угловую скорость можно формировать на основе понятных физических принципов.
  • Естественным образом оказываются разделены горизонтальные и курсовой каналы, очень различные по своим свойствам и способам коррекции. В фильтре Махони они смешаны.
  • Удобно компенсировать влияние ускорений за счёт привлечения данных GNSS, которые выдаются именно в географических, а не связанных осях.
  • Легко обобщить алгоритм на случай высокоточной инерциальной навигации, где приходится учитывать форму и вращение Земли. Как это сделать в схеме Махони, я не представляю.

Фильтр Маджвика. Маджвик избрал трудный путь. Если Махони, судя по всему, интуитивно пришёл к своему решению, а потом обосновал его математически, то Маджвик с самого начала проявил себя формалистом. Он взялся решать задачу оптимизации. Рассудил он так. Зададим ориентацию кватернионом поворота. В идеальном случае расчётное направление какого-нибудь измеряемого вектора (пусть у нас это будет ) совпадает с истинным. Тогда будет . В реальности это не всегда достижимо (особенно если векторов больше чем два), но можно попробовать минимизировать отклонение от точного равенства. Для этого введём критерий минимизации

Минимизация требует градиентного спуска - движения маленькими шагами в сторону, противоположную градиенту , т.е. противоположную наискорейшему возрастанию функции . Кстати, Маджвик допускает ошибку: во всех своих работах он вообще не вводит и настойчиво пишет вместо , хотя фактически вычисляет именно .

Градиентный спуск в итоге приводит к следующему условию: для компенсации дрейфа ориентации нужно добавить к скорости изменения кватерниона из кинематического уравнения новое отрицательное слагаемое, пропорциональное :

Здесь Маджвик немного отступает от нашего «базового принципа»: он добавляет корректирующий член не к угловой скорости, а к скорости изменения кватерниона, а это не совсем одно и то же. В итоге может оказаться, что обновлённый кватернион перестанет быть единичным и, соответственно, утратит способность представлять ориентацию. Поэтому для фильтра Маджвика искусственная нормировка кватерниона - жизненно важная операция, в то время как для других фильтров - желательная, не необязательная.

Влияние ускорений

До сих пор предполагалось, что истинных ускорений нет и акселерометры измеряют только ускорение свободного падения . Это позволяло получить эталон вертикали и с его помощью скомпенсировать дрейф крена и тангажа. Однако в общем случае акселерометры, независимо от своего принципа действия, измеряют кажущееся ускорение - векторную разность истинного ускорения и ускорения свободного падения . Направление кажущегося ускорения не совпадает с вертикалью, и в оценках крена и тангажа появляются ошибки, вызванные ускорениями.

Это легко проиллюстрировать с помощью аналогии виртуальной гироплатформы. Её система коррекции устроена так, что платформа останавливается в том угловом положении, в котором обнуляются сигналы акселерометров, якобы установленных на ней, т.е. когда измеряемый вектор становится перпендикулярен осям чувствительности акселерометров. Если ускорений нет, это положение совпадает с горизонтом. Когда возникают горизонтальные ускорения, гироплатформа отклоняется. Можно сказать, что гироплатформа похожа на сильно задемпфированный маятник или отвес.

В комментариях к посту о фильтре Маджвика промелькнул вопрос о том, можно ли надеяться на то, что этот фильтр менее восприимчив к ускорениям, чем, например, фильтр Махони. Увы, все описанные здесь фильтры эксплуатируют одни и те же физические принципы и поэтому страдают от одних и тех же проблем. Обмануть физику математикой нельзя. Что же тогда делать?

Самый простой и грубый способ придумали ещё в середине прошлого века для авиационных гировертикалей: уменьшать или вовсе обнулять управляющую угловую скорость при наличии ускорений или угловой скорости курса (которая свидетельствует о входе в вираж). Тот же метод можно перенести и в нынешние бесплатформенные системы. Об ускорениях при этом нужно судить по значениям , а не , которые в вираже сами по себе нулевые. Однако в величине не всегда можно отличить истинные ускорения от проекций ускорения свободного падения, обусловленных тем самым наклоном гироплатформы, который требуется устранить. Поэтому метод работает ненадёжно - зато не требует никаких дополнительных датчиков.

Более точный способ основан на использовании внешних измерений скорости от приёмника GNSS. Если известна скорость , то её можно численно продифференцировать и получить истинное ускорение . Тогда разность будет в точности равна независимо от движения носителя. Ей можно пользоваться как эталоном вертикали. Например, можно задать управляющие угловые скорости гироплатформы в виде

Смещения нуля датчиков

Печальной особенностью гироскопов и акселерометров потребительского класса являются большие нестабильности смещений нуля по времени и по температуре. Для их устранения недостаточно одной только заводской или лабораторной калибровки - нужно дооценивание во время работы.

Гироскопы. Разберёмся со смещениями нуля гироскопов . Расчётное положение связанной системы координат уходит от своего истинного положения с угловой скоростью, определяемой двумя противодействующими факторами - смещениями нуля гироскопов и управляющей угловой скоростью: . Если системе коррекции (например, в фильтре Махони) удалось остановить уход, то в установившемся режиме окажется . Иными словами, в управляющей угловой скорости заключена информация о неизвестном действующем возмущении . Поэтому можно применить компенсационное оценивание : мы не знаем величины возмущения непосредственно, однако знаем, какое корректирующее воздействие нужно, чтобы его уравновесить. На этом основано оценивание смещений нуля гироскопов. Например, у Махони оценка обновляется по закону

Однако результат у него получается странный: оценки достигают 0,04 рад/с. Такой нестабильности смещений нуля не бывает даже у самых скверных гироскопов. Подозреваю, проблема связана с тем, что Махони не использует GNSS или другие внешние датчики - и в полной мере страдает от влияния ускорений. Только по вертикальной оси, где ускорения не вредят, оценка выглядит более или менее здравой:


Mahony et al., 2008

Акселерометры. Оценить смещения нуля акселерометров намного сложнее. Информацию о них приходится извлекать из той же управляющей угловой скорости . Однако в прямолинейном движении эффект смещений нуля акселерометров неотличим от наклона носителя или перекоса установки блока датчиков на нём. Никакой добавки к акселерометры не создают. Добавка появляется только при развороте, что и позволяет разделить и независимо оценить погрешности гироскопов и акселерометров. Пример того, как это можно сделать, есть в моей статье. Вот картинки оттуда:

Вместо заключения:, а что же с фильтром Калмана?

У меня нет сомнения, что описанные здесь фильтры почти всегда будут иметь преимущество перед традиционным фильтром Калмана в отношении быстродействия, компактности кода и удобства настройки - для этого они и создавались. Что касается точности оценивания, то здесь всё не столь однозначно. Мне встречались неудачно спроектированные фильтры Калмана, которые и по точности заметно проигрывали фильтру с виртуальной гироплатформой. Маджвик также доказывал выгоды своего фильтра относительно каких-то калмановских оценок. Однако для одной и той же задачи оценивания ориентации можно соорудить не менее десятка разных схем фильтра Калмана, и у каждой будет бесчисленное количество вариантов настройки. У меня нет никаких поводов думать, что фильтр Махони или Маджвика окажется точнее лучшего из возможных фильтров Калмана. И конечно, за калмановским подходом всегда останется преимущество универсальности: он не налагает никаких жёстких ограничений на конкретные динамические свойства оцениваемой системы.

Такое подмножество векторов \left\{ \varphi_i \right\}\subset H, что любые различные два из них ортогональны , то есть их скалярное произведение равно нулю:

(\varphi_i, \varphi_j) = 0.

Ортогональная система в случае её полноты может быть использована в качестве базиса пространства. При этом разложение любого элемента \vec a может быть вычислено по формулам: \vec a = \sum_{k} \alpha_i \varphi_i, где \alpha_i = \frac{(\vec a, \varphi_i)}{(\varphi_i, \varphi_i)}.

Случай, когда норма всех элементов ||\varphi_i||=1, называется ортонормированной системой .

Ортогонализация

Любая полная линейно независимая система в конечномерном пространстве является базисом. От простого базиса, следовательно, можно перейти к ортонормированному базису.

Ортогональное разложение

При разложении векторов векторного пространства по ортонормированному базису упрощается вычисление скалярного произведения: (\vec a, \vec b) = \sum_{k} \alpha_k\beta_k, где \vec a = \sum_{k} \alpha_k \varphi_k и \vec b = \sum_{k} \beta_k \varphi_k.

См. также

Напишите отзыв о статье "Ортогональная система"

Отрывок, характеризующий Ортогональная система

– Ну так что ж ты хочешь? Вы нынче ведь все влюблены. Ну, влюблена, так выходи за него замуж! – сердито смеясь, проговорила графиня. – С Богом!
– Нет, мама, я не влюблена в него, должно быть не влюблена в него.
– Ну, так так и скажи ему.
– Мама, вы сердитесь? Вы не сердитесь, голубушка, ну в чем же я виновата?
– Нет, да что же, мой друг? Хочешь, я пойду скажу ему, – сказала графиня, улыбаясь.
– Нет, я сама, только научите. Вам всё легко, – прибавила она, отвечая на ее улыбку. – А коли бы видели вы, как он мне это сказал! Ведь я знаю, что он не хотел этого сказать, да уж нечаянно сказал.
– Ну всё таки надо отказать.
– Нет, не надо. Мне так его жалко! Он такой милый.
– Ну, так прими предложение. И то пора замуж итти, – сердито и насмешливо сказала мать.
– Нет, мама, мне так жалко его. Я не знаю, как я скажу.
– Да тебе и нечего говорить, я сама скажу, – сказала графиня, возмущенная тем, что осмелились смотреть, как на большую, на эту маленькую Наташу.
– Нет, ни за что, я сама, а вы слушайте у двери, – и Наташа побежала через гостиную в залу, где на том же стуле, у клавикорд, закрыв лицо руками, сидел Денисов. Он вскочил на звук ее легких шагов.
– Натали, – сказал он, быстрыми шагами подходя к ней, – решайте мою судьбу. Она в ваших руках!
– Василий Дмитрич, мне вас так жалко!… Нет, но вы такой славный… но не надо… это… а так я вас всегда буду любить.


Определение . Векторы a и b называются ортогональными (перпендикулярными) друг другу, если их скалярное произведение равно нулю, т.е. a × b = 0.

Для ненулевых векторов a и b равенство нулю скалярного произведения означает, что cosj = 0, т.е. . Нулевой вектор ортогонален любому вектору, т.к. a ×0 = 0.

Упражнение. Пусть и – ортогональные векторы. Тогда естественно считать диагональю прямоугольника со сторонами и . Докажите, что

т.е. квадрат длины диагонали прямоугольника равен сумме квадратов длин двух его непараллельных сторон (теорема Пифагора).

Определение. Система векторов a 1 ,…, a m называется ортогональной, если ортогональны любые два вектора этой системы .

Таким образом, для ортогональной системы векторов a 1 ,…,a m справедливо равенство:a i ×a j = 0 при i ¹ j , i = 1,…, m ; j = 1,…,m .

Теорема 1.5 . Ортогональная система, состоящая из ненулевых векторов, линейно независима. .

□ Доказательство проведем от противного. Предположим, что ортогональная система ненулевых векторов a 1 , …, a m линейно зависима. Тогда

l 1 a 1 + …+ l m a m = 0 , при этом . (1.15)

Пусть, например, l 1 ¹ 0. Домножим на a 1 обе части равенства (1.15):

l 1 a 1 ×a 1 + …+ l m a m ×a 1 = 0.

Все слагаемые, кроме первого, равны нулю в силу ортогональности системы a 1 , …, a m . Тогда l 1 a 1 ×a 1 =0, откуда следует a 1 = 0 , что противоречит условию. Наше предположение оказалось неверным. Значит, ортогональная система ненулевых векторов линейно независима. ■

Имеет место следующая теорема.

Теорема 1.6 . В пространстве R n всегда существует базис, состоящий из ортогональных векторов (ортогональный базис)
(без доказательства).

Ортогональные базисы удобны прежде всего тем, что коэффициенты разложения произвольного вектора по таким базисам определяются просто.

Пусть требуется найти разложение произвольного вектора b по ортогональному базису е 1 ,…,е n . Составим разложение этого вектора с неизвестными пока коэффициентами разложения по данному базису:

Умножим обе части этого равенства скалярно на вектор e 1 . В силу аксиом 2° и 3° скалярного произведения векторов получим

Так как векторы базиса е 1 ,…,е n взаимно ортогональны, то все скалярные произведения векторов базиса, за исключением первого, равны нулю, т.е. коэффициент определяется по формуле

Умножая поочередно равенство (1.16) на другие базисные векторы, мы получим простые формулы для вычисления коэффициентов разложения вектора b :

Формулы (1.17) имеют смысл, поскольку .

Определение . Вектор a называется нормированным (или единичным), если его длина равна 1, т.е. (a , a )= 1.


Любой ненулевой вектор можно нормировать. Пусть a ¹ 0 . Тогда , и вектор есть нормированный вектор.

Определение . Система векторов е 1 ,…,е n называется ортонормированной, если она ортогональна и длина каждого вектора системы равна 1, т.е.

Так как в пространстве R n всегда существует ортогональный базис и векторы этого базиса можно нормировать, то в R n всегда существует ортонормированный базис.

Примером ортонормированного базиса пространства R n может служить система векторов е 1 ,=(1,0,…,0),…, е n =(0,0,…,1) со скалярным произведением, определенным равенством (1.9). В ортонормированном базисе е 1 ,=(1,0,…,0),…, е n =(0,0,…,1) формулы (1.17) для определения координат разложения вектора b имеют наиболее простой вид:

Пусть a и b – два произвольных вектора пространства R n с ортонормированным базисом е 1 ,=(1,0,…,0),…, е n =(0,0,…,1). Обозначим координаты векторов a и b в базисе е 1 ,…,е n соответственно через a 1 ,…,a n и b 1 ,…, b n и найдем выражение скалярного произведения этих векторов через их координаты в данном базисе, т.е. предположим, что

Из последнего равенства в силу аксиом скалярного произведения и соотношений (1.18) получим


Окончательно имеем

Таким образом, в ортонормированном базисе скалярное произведение двух любых векторов равно сумме произведений соответствующих координат этих векторов .

Рассмотрим теперь в n-мерном евклидовом пространстве R n совершенно произвольный (вообще говоря, не ортонормированный) базис и найдем выражение скалярного произведения двух произвольных векторов a и b через координаты этих векторов в указанном базисе.f 1 ,…,f n евклидова пространства R n скалярное произведение двух любых векторов было равно сумме произведений соответствующих координат этих векторов, необходимо и достаточно, чтобы базис f 1 ,…,f n был ортонормированным.

В самом деле, выражение (1.20) переходит в (1.19) тогда и только тогда, когда выполнены соотношения устанавливающие ортонормированность базиса f 1 ,…,f n .

Определение 1. } называется ортогональной, если все ее элементы попарно ортогональны:

Теорема 1. Ортогональная система неравных нулю векторов линейно независима.

{Предположим, система линейно зависима: и, для определенности, Умножим скалярно равенство на . Учитывая ортогональность системы, получим: }

Определение 2. Система векторов евклидова пространства { } называется ортонормированной, если она ортогональна и норма каждого элемента равна единице.

Из теоремы 1 сразу следует, что ортонормированная система элементов всегда линейно независима. Отсюда, в свою очередь, следует, что в n – мерном евклидовом пространстве ортонормированная система из n векторов образует базис (например, {i , j , k } в 3 х – мерном пространстве).Такаясистема называется ортонормированным базисом, а ее векторы – базисными ортами.

Координаты вектора в ортонормированном базисе можно легко вычислить с помощью скалярного произведения: если Действительно, умножая равенство на , получаем указанную формулу.

Вообще, все основные величины: скалярное произведение векторов, длина вектора, косинус угла между векторами и т.д. имеют наиболее простой вид в ортонормированном базисе. Рассмотрим скалярное произведение: , так как

А все остальные слагаемые равны нулю. Отсюда сразу получаем: ,

* Рассмотрим произвольный базис . Скалярное произведение в этом базисе будет равно:

(Здесь α i и β j – координаты векторов в базисе {f }, а – скалярные произведения базисных векторов).

Величины γ ij образуют матрицу G , называемую матрицей Грама. Скалярное произведение в матричной форме будет иметь вид: *

Теорема 2. В любом n – мерном евклидовом пространстве существует ортонормированный базис. Доказательство теоремы носит конструктивный характер и носит название

9. Процесс ортогонализации Грама – Шмидта.

Пусть {a 1 ,...,a n } − произвольный базис n – мерного евклидова пространства (существование такого базиса обусловлено n – мерностью пространства). Алгоритм построения по данному базису ортонормированного заключается в следующем:

1. b 1 =a 1 , e 1 = b 1 /| b 1 |, | e 1 |= 1.

2. b 2 ^e 1 , т.к.(e 1 , a 2 )- проекция a 2 на e 1 , b 2 = a 2 - (e 1 , a 2 )e 1 , e 2 = b 2 /| b 2 |, | e 2 |= 1.

3. b 3 ^a 1 , b 3 ^a 2 , b 3 = a 3 - (e 1 , a 3 )e 1 - (e 2 , a 3 )e 2 , e 3 = b 3 /| b 3 |, | e 3 |= 1.

.........................................................................................................

k. b k ^a 1 ,..., b k ^a k-1 , b k = a k - S i=1 k (e i , a k )e i , e k = b k /| b k |, | e k |= 1.

Продолжая процесс, получаем ортонормированный базис {e 1 ,...,e n }.

Замечание 1 . С помощью рассмотренного алгоритма можно построить ортонормированный базис любой линейной оболочки, например, ортонормированный базис линейной оболочки системы, имеющей ранг равный трем и состоящей из пятимерных векторов.



Пример. x =(3,4,0,1,2), y =(3,0,4,1,2), z =(0,4,3,1,2)

Замечание 2. Особые случаи

Процесс Грама - Шмидта может применяться также к бесконечной последовательности линейно независимых векторов.

Кроме того, процесс Грама - Шмидта может применяться к линейно зависимым векторам. В этом случае он выдаёт 0 (нулевой вектор) на шаге j , если a j является линейной комбинацией векторов a 1 ,...,a j -1 . Если это может случиться, то для сохранения ортогональности выходных векторов и для предотвращения деления на ноль при ортонормировании алгоритм должен делать проверку на нулевые векторы и отбрасывать их. Количество векторов, выдаваемых алгоритмом, будет равно размерности подпространства, порождённого векторами (т.е. количеству линейно независимых векторов, которые можно выделить среди исходных векторов).

10. Геометрические векторные пространства R 1 , R 2 , R 3 .

Подчеркнем, что непосредственный геометрический смысл имеют лишь пространства

R 1 , R 2 , R 3 . Пространство R n при n > 3 – абстрактный чисто математический объект.

1) Пусть дана система из двух векторов a и b . Если система линейно зависима, то один из векторов, допустим a , линейно выражается через другой:

a = kb.

Два вектора, связанные такой зависимостью, как уже сказано, называются коллинеарными. Итак, система из двух векторов линейно зависима тогда и только

тогда, когда эти векторы коллинеарны. Заметим, что такое заключение относится не только к R 3 , но и к любому линейному пространству.

2) Пусть система в R3 состоит из трех векторов a, b, c . Линейная зависимость означает, что один из векторов, скажем a , линейно выражается через остальные:

а = kb+ lc . (*)

Определение. Три вектора a, b, с в R 3 , лежащие в одной плоскости или параллельные одной плоскости, называются компланарными

(на рис. слева указаны векторы a, b, с из одной плоскости, а справа те же векторы отложены от разных начал и лишь параллельны одной плоскости).

Итак, если три вектора в R3 линейно зависимы, то они компланарны. Справедливо и обратное: если векторы a, b, с из R3 компланарны, то они линейно зависимы.

Векторным произведением вектора a, на вектор b в пространстве называется вектор c , удовлетворяющий следующим требованиям:

Обозначение:

Рассмотрим упорядоченную тройку некомпланарных векторов a, b, c в трёхмерном пространстве. Совместим начала этих векторов в точке А (то есть выберем произвольно в пространстве точку А и параллельно перенесём каждый вектор так, чтобы его начало совпало с точкой А ). Концы векторов, совмещённых началами в точке А , не лежат на одной прямой, так как векторы некомпланарны.

Упорядоченная тройка некомпланарных векторов a, b, c в трёхмерном пространстве называется правой , если с конца вектора c кратчайший поворот от вектора a к вектору b виден наблюдателю против часовой стрелки. И наоборот, если кратчайший поворот виден по часовой стрелке, то тройка называется левой .

Другое определение связано с правой рукой человека (см. рисунок), откуда и берётся название.

Все правые между собой (и левые между собой) тройки векторов называются одинаково ориентированными.

1) О. такое, что (x a , x ab)=0 при . Если при этом норма каждого вектора равна единице, то система {x a } наз. ортонормированной. Полная О. с. {x a } наз. ортогональным (ортонормированным) базисом. М. И. Войцеховский.

2) О. с. координат - система координат, и к-рой координатные линии (или поверхности) пересекаются под прямым углом. О. с. координат существуют в любом евклидовом пространстве, но, вообще говоря, не существуют в произвольном пространстве. В двумерном гладком аффинном пространстве О. с. всегда можно ввести по крайней мере в достаточно малой окрестности каждой точки. Иногда возможно введение О. с. координат в делом. В О. с. метрич. тензор g ij диагоналей; диагональные компоненты g ii принято наз. коэффициентами Ламе. Ламе коэффициент О. с. в пространстве выражаются формулами


где x, у и z - декартовы прямоугольные координаты. Через коэффициенты Ламе выражаются элемент длины:

элемент площади поверхности:

элемент объема:

векторные дифференциальные операции:


Наиболее часто используемые О. с. координат: на плоскости - декартовы, полярные, эллиптические, параболические; в пространстве - сферические, цилиндрические, параболоидальные, бицилиндрические, биполярные. Д. Д. Соколов.

3) О. с. функций - конечная или счетная система {j i (x)} функций, принадлежащих пространству

L 2 (X, S, m) и удовлетворяющих условиям

Если l i =1 для всех i, то система наз. ортонормированной. При этом предполагается, что мера m(x), определенная на s-алгебре Sподмножеств множества X, счетно аддитивна, полна и имеет счетную базу. Это определение О. с. включает все рассматриваемые в современном анализе О. с.; они получаются при различных конкретных реализациях пространства с мерой (X, S, m).

Наибольший интерес представляют полные ортонормированные системы {j n (x)}, обладающие тем свойством, что для любой функции существует единственный ряд , сходящийся к f(x) в метрике пространства L 2 (X, S, m), при этом коэффициенты с п определяются формулами Фурье


Такие системы существуют в силу сепарабельности пространства L 2 (X, S, m). Универсальный способ построения полных ортонормированных систем дает метод ортогонализации Шмидта. Для этого достаточно применить его к нек-рой полной L 2 (S, X, m) системе линейно независимых функций.

В теории ортогональных рядов в основном рассматриваются О. с. пространЛва L 2 [a, b ](тот частный случай, когда Х= [ а, b ], S - система множеств, измеримых по Лебегу, и m - мера Лебега). Многие теоремы о сходимости или суммируемости рядов , , по общим О. с. {j n (x)} пространства L 2 [a, b ]верны и для рядов по ортонормированным системам пространства L 2 (X, S, m). Вместе с тем в этом частном случае построены интересные конкретные О. с., обладающие теми или иными хорошими свойствами. Таковы, например, системы Хаара, Радемахера, Уолша-Пэли, Франклина.

1) Система Хаара


где m=2 n +k, , т=2, 3, ... . Ряды по системе Хаара представляют типичный пример мартингалов и для них верны общие теоремы из теории мартингалов. Кроме того, система является базисом в L p , , и ряд Фурье по системе Хаара любой интегрируемой функции почти всюду сходится.

2) Система Радемахера

представляет собой важный пример О. с. независимых функций и имеет применения как в теории вероятностей, так н в теории ортогональных и общих функциональных рядов.

3) Система Уолша - Пэли определяется через функции Радемахера:

где числа ти q k определяются из двоичного разложения числа п:


4) Система Франклина получается ортогонализацией методом Шмидта последовательности функций

Она является примером ортогонального базиса пространства С непрерывных функций.

В теории кратных ортогональных рядов рассматриваются системы функций вида

где - ортонормированная система в L 2 [a, b ]. Такие системы ортонормированы на m-мерном кубе J m = [a, b ]x . . .x[ а, b ] и полны, если полна система {j n (x)}

Лит. :[l] Качмаж С., Штейнгауз Г., Теория ортогональных рядов, пер. с нем., М., 1958; Итоги науки. Математический анализ, 1970, М., 1971, с. 109-46; там же, с. 147- 202; Дуб Д ж., Вероятностные процессы, пер. с англ., М., 1956; Лоэв М., Теория вероятностей, пер. с англ., М., 1962; Зигмунд А., Тригонометрические ряды, пер. с англ., т. 1-2, М., 1965. А. А. Талалян.

  • - конечная или счётная система ф-ций, принадлежащих гильбертову пространству L2 и удовлетворяющих условиям Ф-ция gназ. весом О. с. ф.,* означает комплексное сопряжение...

    Физическая энциклопедия

  • - группа всех линейных преобразований n-мерного векторного пространства Vнад полем k, сохраняющих фиксированную невырожденную квадратичную форму Q на V)=Q для любого)...

    Математическая энциклопедия

  • - матрица над коммутативным кольцом R с единицей 1, для к-рой транспонированная матрица совпадает с обратной. Определитель О. м. равен +1...

    Математическая энциклопедия

  • - сеть, у к-рой касательные в нек-рой точке к линиям различных семейств ортогональны. Примеры О. с.: асимптотическая сеть на минимальной поверхности, кривизны линий сеть. А. В. Иванов...

    Математическая энциклопедия

  • - ортогональный массив, ОА - матрица размера kx N, элементы к-рой суть числа 1, 2, .....

    Математическая энциклопедия

  • - см. Изогональная траектория...

    Математическая энциклопедия

  • - English: System «generator - motor» Регулируемый электропривод, преобразовательным устройством которого является электромашинный преобразовательный агрегат Источник: Термины и определения в электроэнергетике...

    Строительный словарь

  • - см. Проекция...

    Большой энциклопедический политехнический словарь

  • - порядок определения результатов выборов, при котором мандаты между партиями, выставившими своих кандидатов в представительный орган, распределяются в соответствии с полученным ими количеством голосов...

    Словарь юридических терминов

  • - разновидность пропорциональной избирательной системы. По конечным результатам напоминает пропорциональную систему с панашированием и преференциальным голосованием...

    Словарь юридических терминов

  • - органы тела человека, участвующие в процессе воспроизведения потомства...

    Медицинские термины

  • - серия из четырех видов генов, которые кодируют полиморфные белки, содержащиеся на поверхности большинства ядросодержащих клеток...

    Медицинские термины

  • - порядка n Матрица...
  • - частный случай параллельной проекции, когда ось или плоскость проекций перпендикулярна направлению проектирования...

    Большая Советская энциклопедия

  • - система функций {}, n = 1, 2,..., ортогональных с весом ρ на отрезке, т. е. таких, что Примеры. Тригонометрическая система 1, cos nx, sin nx; n = 1, 2,..., - О. с. ф. с весом 1 на отрезке...

    Большая Советская энциклопедия

  • - ОРТОГОНАЛЬНАЯ система ФУНКЦИЙ - система функций??n?, n=1, 2,.....

    Большой энциклопедический словарь

"ОРТОГОНАЛЬНАЯ СИСТЕМА" в книгах

Параграф XXIV Старая система позиционных войн и современная система маршей

Из книги Стратегия и тактика в военном искусстве автора Жомини Генрих Вениаминович

Параграф XXIV Старая система позиционных войн и современная система маршей Под системой позиций понимается старый способ ведения методической войны с армиями, ночующими в палатках, имеющими снабжение под рукой, занимающимися наблюдением друг за другом; одна армия

19. Понятие «налоговая система РФ». Соотношение понятий «налоговая система» и «система налогов»

Из книги Налоговое право автора Микидзе С Г

19. Понятие «налоговая система РФ». Соотношение понятий «налоговая система» и «система налогов» Система налогов – это совокупность установленных в РФ федеральных налогов, региональных и местных налогов. Ее структура закреплена в ст. 13–15 НК РФ.В соответствии с

Из книги Как было на самом деле. Реконструкция подлинной истории автора Носовский Глеб Владимирович

23. Геоцентрическая система Птолемея и гелиоцентрическая система Тихо Браге (и Коперника) Система мира по Тихо Браге показана на рис. 90. В центре мира находится Земля, вокруг которой вращается Солнце. Однако все остальные планеты уже обращаются вокруг Солнца. Именно

23. Геоцентрическая система Птолемея и гелиоцентрическая система Тихо Браге (и Коперника)

Из книги автора

23. Геоцентрическая система Птолемея и гелиоцентрическая система Тихо Браге (и Коперника) Система мира по Тихо Браге показана на рис. 90. В центре мира находится Земля, вокруг которой вращается Солнце. Однако, все остальные планеты уже обращаются вокруг Солнца. Именно

Ортогональная матрица

БСЭ

Ортогональная проекция

Из книги Большая Советская Энциклопедия (ОР) автора БСЭ

Ортогональная система функций

Из книги Большая Советская Энциклопедия (ОР) автора БСЭ

49. Судебная система и система правоохранительных органов по «Основам законодательства СССР и союзных республик» 1958 г.

Из книги История государства и права России автора Пашкевич Дмитрий

49. Судебная система и система правоохранительных органов по «Основам законодательства СССР и союзных республик» 1958 г. Основы законодательства о судоустройствеустанавливали принципы построения судебной системы Союза ССР, принципы коллегиального рассмотрения

Система объективного (позитивного) права и система законодательства: соотношение понятий

Из книги Правоведение автора Мардалиев Р. Т.

Система объективного (позитивного) права и система законодательства: соотношение понятий Система объективного (позитивного) права это внутреннее строение права, деление его на отрасли, подотрасли и институты в соответствии с предметом и методом правового

29. Приказная система управления и система местного самоуправления в период сословно-представительной монархии

автора

29. Приказная система управления и система местного самоуправления в период сословно-представительной монархии Приказы – органы системы централизованного управления, которые первоначально развились из единоличных и временных правительственных поручений, издаваемых

86. Cудебная система и система правоохранительных органов по «Основам законодательства СССР и союзных республик» 1958 г

Из книги Шпаргалка по истории государства и права России автора Дудкина Людмила Владимировна

86. Cудебная система и система правоохранительных органов по «Основам законодательства СССР и союзных республик» 1958 г Уже с 1948 г. процессуальное законодательство СССР и республик претерпело значительные изменения:1) народные суды стали выборными;2) суды стали более

31. Система государственных органов Франции, избирательное право и избирательная система

Из книги Конституционное право зарубежных стран автора Имашева Е Г

31. Система государственных органов Франции, избирательное право и избирательная система Во Франции существует смешанное (или полупрезидентское) республиканское правление. Система органов власти во Франции построена на принципе разделения властей.Современная Франция

44. Система государственных органов Франции, избирательное право и избирательная система

Из книги Конституционное право зарубежных стран. Шпаргалка автора Белоусов Михаил Сергеевич

44. Система государственных органов Франции, избирательное право и избирательная система Франция является смешанной (полупрезидентской) республикой, система органов власти которой основана на принципе разделения властей.Франция сегодня – это республика с сильной

Глава IV. Двойная система соответствия голове. Система "насекомого". Минисистема

Из книги Су Джок для всех автора Ву Пак Чжэ

Глава IV. Двойная система соответствия голове. Система "насекомого". Минисистема Двойная система соответствия головеНа пальцах кистей и стоп располагаются две системы соответствия голове: система "типа человека" и система "типа животного".Система "типа человека".Граница

Первый эмоциональный центр - костная система, суставы, кровообращение, иммунная система, кожа

Из книги Всё будет хорошо! автора Хей Луиза

Первый эмоциональный центр - костная система, суставы, кровообращение, иммунная система, кожа Здоровое состояние органов, связанных с первым эмоциональным центром, зависит от ощущения безопасности в этом мире. Если вы лишены поддержки семьи и друзей, которая вам

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама