THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Вписанная и описанная окружности

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Теорема 2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника

2.Теоремы (свойства параллелограмма):

· В параллелограмме противоположные стороны равны и противоположные углы равны: , , , .

· Диагонали параллелограмма точкой пересечения делятся пополам: , .

· Углы, прилежащие к любой стороне, в сумме равны .

· Диагонали параллелограмма делят его на два равных треугольника.

· Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: .

Признаки параллелограмма:

· Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.

· Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона .

· Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника

3. Трапеция - четырехугольник, у которого две стороны параллельны, а две стороны не параллельны. Параллельные стороны называются основаниями трапеции , две другие - боковыми сторонами .

Высота трапеции - расстояние между прямыми, на которых лежат основания трапеции, любой общий перпендикуляр этих прямых.

Средняя линия трапеции - отрезок, соединяющий середины боковых сторон.

Свойство трапеции:

Если в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон: , а средняя линия - полусумме боковых сторон: .

Равнобедренная трапеция - трапеция, у которой боковые стороны равны . Тогда равны диагонали и углы при основании , .

Из всех трапеций только около равнобедренной трапеции можно описать окружность, так как окружность можно описать около четырехугольника, только если сумма противоположных углов равна .

В равнобедренной трапеции расстояние от вершины одного основания, до проекции противоположной вершины на прямую, содержащую это основание равно средней линии.

Прямоугольная трапеция - трапеция, у которой один из углов при основании равен .

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство. Пусть E - точка пересечения хорд AB и CD (рис. 110). Докажем, что AE * BE = CE * DE.

Рассмотрим треугольники ADE и CBE. Их углы A и C равны, так как они вписанные и опираются на одну и ту же дугу BD. По аналогичной причине ∠D = ∠B. Поэтому треугольники ADE и CBE подобны (по второму признаку подобия треугольников). Таким образом, DE/BE = AE/CE, или

AE * BE = CE * DE.

Теорема доказана.

5. Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO =

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).

6. Теорема Фалеса

Если на одной из двух прямых отложить последовательно несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки

Обратная теорема Фалеса

Если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны

Предварительный просмотр:

Урок по теме:

«Теорема о произведении отрезков пересекающихся хорд »

Предмет : геометрия

Класс : 8

Учител ь: Герат Людмила Васильевна

Школа : МОБУ«Дружбинская СОШ» Соль–Илецкого р-на, Оренбургской области

Тип урока: Урок «открытия» новых знаний.

Формы работы: индивидуальная, фронтальная, групповая.

Методы обучения: словесный, наглядный, практический, проблемный.

Оборудование: компьютерный класс, мультимедийный проектор,

Раздаточный материал (карточки), презентация.

Цели урока:

  • образовательные - изучить теорему о произведении пересекающихся хорд, и показать ее применение при решении задач.

Совершенствовать навыки решения задач на применение теоремы о вписанном угле и ее следствий.

  • развивающие – развивать творческую и мыслительную деятельность учащихся на уроке; развивать интеллектуальные качества личности школьников такие, как самостоятельность, гибкость, способность к оценочным действиям, обобщению; способствовать формированию навыков коллективной и самостоятельной работы; формировать умения четко и ясно излагать свои мысли.
  • воспитательные – прививать учащимся интерес к предмету посредством применения информационных технологий (с использованием компьютера); формировать умение аккуратно и грамотно выполнять математические записи, составлять рисунок к задаче.

Образовательная деятельность направлена на повышение результативности, производительности педагогического труда путем перевода учащихся из позиции объекта деятельности учителя в позицию субъекта учения , содействует развитию потенциала каждого ребенка, раскрытию заложенных в нем возможностей.

Воспитание (развитие) субъектности возможно только в деятельности, в которую вовлечен субъект, в которой он сам: а) ставит цели; б) концентрирует волевое усилие на достижение цели; в) рефлексирует ход и результаты своей работы. Рефлексия является мощнейшим инструментом саморазвития личности (самостроительства личности).

Проблему развития субъектности ученика в сколь-нибудь полной мере нельзя решить разовыми мероприятиями. Это качество развивается последовательно за счет включения ученика в учебно-познавательную деятельность (в идеале – на каждом уроке), которую он выполняет сам, прикладывая свои собственные усилия, выполняя своими собственными силами, при минимальной помощи извне все действия в их логической последовательности. Урок обеспечивает рефлексию учащихся на все 4 этапа работы плюс итоги, полностью отвечая требованиям деятельностного подхода в образовании.

Посредством предложенного оформления урока и использования компьютерных технологий преследуются цели развития:

  • Интеллектуальной культуры;
  • Информационной культуры;
  • Культуры самоорганизации;
  • Исследовательской культуры;

Деятельность учащихся должна организовываться таким образом, чтобы обеспечивать у обучаемых внутренние цели-мотивы; потребность в поиске – важнейшей задачи обучения и воспитания, для этого необходимо создавать ситуации успеха, ситуации поиска - вызывающие положительные эмоции.

План урока

1. Доказательство теоремы о вписанном угле (3 случая); работа по карточкам,

Решение задач по готовым чертежам.

2. Работа в парах.

3. Изучение теоремы о произведении отрезков пересекающихся хорд.

4. Решение задач на закрепление теоремы.

Ход урока.

  1. Актуализация знаний учащихся по изучаемой теме.

К доске вызываются три учащихся для доказательства теорем, двое учащихся получают карточки-задания, остальные учащиеся решают задачи на готовых чертежах. Доказательство теорем заслушивается всем классом после решения учащимися задач на готовых чертежах.

Карточка №1..

1. Вставьте пропущенные слова « Угол называется вписанным, если его вершина лежит на …………….., а стороны угла……………………………..».

2. Найдите и запишите вписанные углы, изображенные на рисунке:

3. Найдите градусную меру угла АВС, изображенного на рисунке, если градусная мера дуги АВС = 270 .

Карточка №2.

1. Вставьте пропущенные слова: «Вписанный угол измеряется ………….».

  1. Дано: ОА=АВ. Найдите градусную меру дуги АВ.

Решение задач по готовым чертежам.

Рис.1. Найти Рис.2. Рис.3. Рис.4. Рис.5.

AOD, ACD Найти ABC Найти BCD Найти BAC Найти BCD

II. Работа в парах.

Доказательство теоремы об отрезках пересекающихся хорд провести в виде задачи:

Докажите, что если две хорды АВ и СD окружности пересекаются в точке Е, то

АЕ * ВЕ =CE * DE

Задачу предлагается решить самостоятельно в парах, а затем обсудить ее решение. В тетрадях и на доске записать план-конспект доказательства теоремы.

План-конспект

а) АСЕ ДВЕ (А = D как вписанные углы, опирающиеся на дугу ВС;

АЕС = DЕВ как вертикальные).

Вопросы для обсуждения:

Что вы можете сказать об углах САВ и СDВ? Oб углах АЕС и DЕВ?

Какими являются треугольники АСЕ и DВЕ? Чему равно отношение их сторон, являющихся отрезками хорд касательных?

Какое равенство можно записать из равенства двух отношений, используя основное свойство пропорций?

IV. Закрепление изученного материала .

Решить задачу: Хорды окружности РТ и КМ пересекаются в точке Е. Найти МЕ, если

КE = 4cм., ТE =6см., РE =2см.

Решение: АЕ * ВЕ =CE * DE

АЕ * 4 = 2 *6

АЕ = 3см.

№ 666 б. х*х =16*9

Х* х =144

Х = 12

V. Рефлексия. (используя стикеры трех цветов)

VI. Домашнее задание.

п. 71, №666 а,в; 667.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Хорда в переводе с греческого означает «струна». Это понятие широко применяется в разных областях науки - в математике, биологии и других.

В геометрии для термина определение будет следующим: это отрезок прямой линии, который соединяет между собой две произвольные точки на одной окружности. Если такой отрезок пересекает центр кривой, она называется диаметром описываемой окружности.

Вконтакте

Как построить геометрическую хорду

Чтобы построить этот отрезок, прежде всего необходимо начертить круг. Обозначают две произвольные точки, через которые проводят секущую линию. Отрезок прямой, который располагается между точками пересечения с окружностью, называется хордой.

Если разделить такую ось пополам и из этой точки провести перпендикулярную прямую, она будет проходить через центр окружности. Можно провести обратное действие - из центра окружности провести радиус, перпендикулярный хорде. В этом случае радиус разделит её на две идентичные половины.

Если рассматривать части кривой, которые ограничиваются двумя параллельными равными отрезками, то эти кривые тоже будут равными между собой .

Свойства

Существует ряд закономерностей , связывающих между собой хорды и центр круга:

Взаимосвязь с радиусом и диаметром

Вышеуказанные математические понятия связаны между собой следующими закономерностями:

Хорда и радиус

Между этими понятиями существуют следующие связи:

Отношения со вписанными углами

Углы, вписанные в окружность, подчиняются следующим правилам:

Взаимодействия с дугой

Если два отрезка стягивают участки кривой, одинаковые по размеру, то такие оси равны между собой. Из этого правила вытекают следующие закономерности:

Хорда, которая стягивает ровно половину окружности, является её диаметром. Если две линии на одной окружности параллельны между собой, то будут равными и дуги, которые заключены между этими отрезками. Однако не следует путать заключённые дуги и стягиваемые теми же линиями.














Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель: повысить мотивацию к обучению; развивать вычислительные навыки, сообразительность, умение работать в команде.

Ход занятия

Актуализация знаний. Сегодня мы продолжим говорить об окружности. Позвольте напомнить определение окружности: что называется окружностью?

Окружность - это линия, состоящая из всех точек плоскости, которые находятся на заданном расстоянии от одной точки плоскости, называемой центром окружности.

На слайде изображена окружность, отмечен ее центр - точка О, проведены два отрезка: ОА и СВ. Отрезок ОА соединяет центр окружности с точкой на окружности. Он называется РАДИУСОМ (по-латыни radius - “спица в колесе”). Отрезок СВ соединяет две точки окружности и проходит через ее центр. Это диаметр окружности (в переводе с греческого – “поперечник”).

Также нам понадобится определение хорды окружности - это отрезок, соединяющий две точки окружности (на рисунке – хорда DE).

Давайте выясним вопрос о взаимном расположении прямой и окружности.

Следующий вопрос и он будет основным: выяснить свойства, которыми обладают пересекающиеся хорды, секущие и касательные.

Доказывать эти свойства вы будете на уроках математики, а наша задача научиться применять эти свойства при решении задач, так как они находят широкое применение на экзаменах и в форме ЕГЭ, и в форме ГИА.

Задание для команд.

  • Изобразить и записать свойство пересекающихся в точке Р хорд КМ и NF.
  • Изобразить и записать свойство касательной КМ и секущей КF.
  • Изобразить и записать свойство секущих КМ и МF.

Используя данные на рисунке, найдите х. Слайд 5–6

Кто быстрее, правильней. С последующим обсуждением и проверкой решения всех задач. Отвечающие зарабатывают для своей команды поощрительные баллы.

Ну, а теперь приступим к решению более серьезных задач. Вашему вниманию предлагается три блока: пересекающиеся хорды, касательная и секущая, две секущие. Подробным образом разберем решение по одной задачи из каждого блока.

(Разбирается решение с подробной записью №4, №7, №12)

2. Практикум по решению задач

а) Пересекающиеся хорды

1. E – точка пересечения хорд AB и CD. AE=4, AB=10, СE:ED=1:6. Найти CD.

Решение:

2. E – точка пересечения хорд AB и CD. AB=17, CD=18, ED=2CE. Найти AE и BE.

Решение:

3. E – точка пересечения хорд AB и CD. AB=10, CD=11, BE=CE+1. Найти CE.

Решение:

4. E – точка пересечения хорд AB и CD. ED=2AE, CE=DE-1, BE=10. Найти CD.

Решение:

б) Касательная и секущая

5. Из одной точки проведены к окружности касательная и секущая. Касательная равна 6, секущая – 18. Определить внутренний отрезок секущей.


Решение:

6. Из одной точки проведены к окружности касательная и секущая. Найти касательную, если известно, что она меньше внутреннего отрезка секущей на 4 и больше внешнего отрезка на 4.


Решение:

7. Из одной точки проведены к окружности касательная и секущая. Найти секущую, если известно, что внутренний её отрезок относится к внешнему, как 3:1, а длина касательной равна 12.


Решение:

8. Из одной точки проведены к окружности касательная и секущая. Найти внешний отрезок, секущей, если известно, что внутренний её отрезок 12, а длина касательной 8.


Решение:

9. Касательная и секущая, исходящие из одной точки, соответственно равны 12 и 24. Определить радиус окружности, если секущая удалена от центра на 12.


Решение:

в) Две секущие

10. Из одной точки проведены к окружности две секущие, внутренние отрезки которых соответственно равны 8 и 16. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой. Найти длину каждой секущей.


Решение:

11. Из одной точки проведены к окружности две секущие. Внешний отрезок первой секущей относится к своему внутреннему, как 1:3. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой и относится к своему внутреннему отрезку, как 1:8. Найти длину каждой секущей.


Решение:

12. Через точку А, которая находится вне окружности на расстоянии 7 от её центра, проведен прямая, пересекающая окружность в точках В и С. Найдите длину радиуса окружности, если АВ=3, ВС=5.


Решение:

13. Из точки А проведены к окружности секущая длиной 12 см и касательная, составляющая внутреннего отрезка секущей. Найдите длину касательной.


Решение:

  1. 10,5; 17,5
  2. 12;18

3. Закрепление знаний

Считаю, что вы обладаете достаточным запасом знаний, чтобы отправится в небольшое путешествие по лабиринтам вашего интеллекта, посетив следующие станции:

  • Соображай-ка!
  • Решай-ка!
  • Отвечай-ка!

На станции можно находиться не более 6 минут. За каждое верное решение задачи команда получает поощрительные баллы.

Командам вручаются маршрутные листы:

Маршрутный лист

Станция Номера задач Отметка о решении
Решай-ка! №1, №3
Соображай-ка! №5, №8
Отвечай-ка! №10, №11

Хотелось бы подвести итоги нашего занятия:

Помимо новых знаний надеюсь, вы лучше познакомились друг с другом, приобрели опыт работы в команде. А как вы думаете, полученные знания находят где-то применение в жизни?

Поэт Г. Лонгфелло был еще и математиком. Наверное, поэтому яркие образы, украшающие математические понятия, которые он использовал в своем романе “Каванг”, позволяют запечатлеть на всю жизнь некоторые теоремы и их применение. Читаем в романе следующую задачу:

“Лилия, на одну пядь поднимавшаяся над поверхностью воды, под порывом свежего ветра коснулась поверхности озера в двух локтях от прежнего места; исходя из этого требовалось определить глубину озера” (1 пядь равна 10 дюймам, 2 локтя – 21 дюйму).

А решается эта задача на основе свойства пересекающихся хорд. Посмотрите на рисунок, и станет ясно, как находится глубина озера.

Решение:

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама