THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Ник. Горькавый

Другие научные сказки Ник. Горькавого печатались в журнале «Наука и жизнь» в 2010-2013 годах.

Доменико Фетти. Архимед размышляет. 1620 год. Картина из Галереи старых мастеров, Дрезден.

Эдуард Вимон. Смерть Архимеда. 1820-е годы.

Гробница Архимеда в Сиракузах. Фото: Codas2.

Остров Ортигия, исторический центр Сиракуз, родного города Архимеда. У этих берегов Архимед сжёг и потопил римские галеры. Фото: Marcos90.

Греческий театр в Сиракузах. Фото: Victoria|photographer_location_London, UK.

Архимед переворачивает Землю с помощью рычага. Старинная гравюра. 1824 год.

Изображение Архимеда на золотой медали Филдса - высшей награде среди математиков. Надпись на латыни: «Transire suum pectus mundoque potiri» - «Превзойти свою человеческую ограниченность и покорить Вселенную». Фото Стефана Захова.

Каждая новая сказка писателя и астрофизика, доктора физико-математических наук Николая Николаевича Горькавого (Ник. Горькавого) - это рассказ о том, как совершались важные открытия в той или иной области науки. И неслучайно героями его научно-популярных романов и сказок стали принцесса Дзинтара и её дети - Галатея и Андрей, ведь они из породы тех, кто стремится «всё знать». Истории, рассказанные Дзинтарой детям, вошли в сборник «Звёздный витамин». Он оказался таким интересным, что читатели потребовали продолжения. Предлагаем вам ознакомиться с некоторыми сказками из будущего сборника «Создатели времён». Перед вами - первая публикация.

Величайший учёный античного мира древнегреческий математик, физик и инженер Архимед (287-212 годы до н.э.) был родом из Сиракуз - греческой колонии на самом большом острове Средиземноморья - Сицилии. Древние греки, создатели европейской культуры, поселились там почти три тысячи лет назад - в VIII веке до нашей эры, и к моменту рождения Архимеда Сиракузы были процветающим культурным городом, где жили свои философы и учёные, поэты и ораторы.

Каменные дома горожан обступали дворец царя Сиракуз Гиерона II, высокие стены защищали город от врагов. Жители любили собираться на стадионах, где состязались бегуны и метатели диска, и в банях, где не просто мылись, а отдыхали и обменивались новостями.

В тот день в банях на главной площади города было шумно - смех, крики, плеск воды. Молодёжь плавала в большом бассейне, а люди почтенного возраста, держа в руках серебряные кубки с вином, вели неспешную беседу на удобных ложах. Солнце заглядывало во внутренний дворик бань, освещая проём двери, ведущей в отдельную комнату. В ней, в небольшом бассейне, похожем на ванну, сидел в одиночестве человек, который вёл себя совсем не так, как другие. Архимед - а это был именно он - прикрыл глаза, но по каким-то неуловимым признакам было видно, что человек этот не спит, а напряжённо думает. В последние недели учёный настолько углубился в свои мысли, что часто забывал даже про еду и домашним приходилось следить, чтобы он не остался голодным.

Началось с того, что царь Гиерон II пригласил Архимеда к себе во дворец, налил ему лучшего вина, спросил про здоровье, а потом показал золотую корону, изготовленную для правителя придворным ювелиром.

Я не разбираюсь в ювелирном деле, но разбираюсь в людях, - сказал Гиерон. - И думаю, что ювелир меня обманывает.

Царь взял со стола слиток золота.

Я дал ему точно такой же слиток, и он сделал из него корону. Вес у короны и слитка одинаковый, мой слуга проверил это. Но меня не оставляют сомнения, не подмешано ли в корону серебро? Ты, Архимед, самый великий учёный Сиракуз, и я прошу тебя это проверить, ведь, если царь наденет фальшивую корону, над ним будут смеяться даже уличные мальчишки…

Правитель протянул корону и слиток Архимеду со словами:

Если ты ответишь на мой вопрос, то оставишь золото себе, но я всё равно буду твоим должником.

Архимед взял корону и слиток золота, вышел из царского дворца и с тех пор потерял покой и сон. Уж если он не сможет решить эту задачу, то и никто не сможет. Действительно, Архимед был самым известным учёным Сиракуз, учился в Александрии, дружил с главой Александрийской библиотеки, математиком, астрономом и географом Эратосфеном и другими великими мыслителями Греции. Архимед прославился множеством открытий в математике и геометрии, заложил основы механики, на его счету несколько выдающихся изобретений.

Озадаченный учёный пришёл домой, положил корону и слиток на чаши весов, поднял их за середину и убедился, что вес у обоих предметов одинаковый: чаши покачивались на одном уровне. Плотность чистого золота была Архимеду известна, предстояло узнать плотность короны (вес, делённый на объём). Если в короне есть серебро, её плотность должна быть меньше плотности золота. А раз веса` короны и слитка совпадают, то объём фальшивой короны должен быть больше объёма золотого слитка. Объём слитка измерить можно, но как определить объём короны, в которой столько сложных по форме зубцов и лепестков? Вот эта проблема и мучила учёного. Он был прекрасным геометром, например, решил сложную задачу - определение площади и объёма шара и описанного вокруг него цилиндра, но как найти объём тела сложной формы? Нужно принципиально новое решение.

В баню Архимед пришёл, чтобы смыть с себя пыль жаркого дня и освежить уставшую от размышлений голову. Обычные люди, купаясь в бане, могли болтать и жевать инжир, а Архимеда мысли о нерешённой задаче не оставляли ни днём, ни ночью. Его мозг искал решение, цепляясь за любую подсказку.

Архимед снял хитон, положил его на лавку и подошёл к маленькому бассейну. Вода плескалась в нём на три пальца ниже края. Когда учёный погрузился в воду, её уровень заметно поднялся, и первая волна даже выплеснулась на мрамор пола. Учёный прикрыл глаза, наслаждаясь приятной прохладой. Мысли об объёме короны привычно кружились в голове.

Вдруг Архимед почувствовал, что случилось что-то важное, но не мог понять - что. Он с досадой открыл глаза. Со стороны большого бассейна доносились голоса и чей-то горячий спор - кажется, о последнем законе правителя Сиракуз. Архимед замер, пытаясь осознать, что же всё-таки произошло? Он осмотрелся вокруг: вода в бассейне не доставала до края всего на один палец, а ведь когда он входил в воду, уровень её был ниже.

Архимед встал и вышел из бассейна. Когда вода успокоилась, она вновь оказалась на три пальца ниже края. Учёный снова забрался в бассейн - вода послушно поднялась. Архимед быстро оценил размер бассейна, вычислил его площадь, потом умножил на изменение уровня воды. Получилось, что объём воды, вытесненной его телом, равен объёму тела, если принять, что плотности воды и человеческого тела почти одинаковы и каждый кубический дециметр, или кубик воды со стороной в десять сантиметров, можно приравнять к килограмму веса самого учёного. Но при погружении тело Архимеда потеряло в весе и плавало в воде. Каким-то таинственным образом вода, вытесненная телом, отобрала у него вес…

Архимед понял, что он на верном пути, - и вдохновение понесло его на своих могучих крыльях. Можно ли применить найденный закон об объёме вытесненной жидкости к короне? Конечно! Надо опустить корону в воду, измерить увеличение объёма жидкости, а потом сравнить с объёмом воды, вытесняемой золотым слитком. Задача решена!

Согласно легенде, Архимед с победным криком «Эврика!», что значит по-гречески «Нашёл!», выскочил из бассейна и, забыв надеть хитон, помчался домой. Надо было срочно проверить своё решение! Он бежал по городу, а жители Сиракуз приветственно махали ему руками. Всё-таки не каждый день открывается важнейший закон гидростатики и не каждый день можно увидеть голого человека, бегущего по центральной площади Сиракуз.

На следующий день царю доложили о приходе Архимеда.

Я решил задачу, - сказал учёный. - В короне действительно много серебра.

Как ты это узнал? - поинтересовался правитель.

Вчера, в банях, я догадался, что тело, которое погружается в бассейн с водой, вытесняет объём жидкости, равный объёму самого тела, и теряет при этом в весе. Вернувшись домой, я провёл множество опытов с чашами весов, погружёнными в воду, и доказал, что тело в воде теряет в весе ровно столько, сколько весит вытесненная им жидкость. Поэтому человек может плавать, а золотой слиток - нет, но всё равно в воде он весит меньше.

И как же это доказывает наличие серебра в моей короне? - спросил царь.

Вели принести чан с водой, - попросил Архимед и достал весы. Пока слуги тащили чан в царские покои, Архимед положил на весы корону и слиток. Они уравновесили друг друга.

Если в короне есть серебро, то объём короны больше, чем объём слитка. Значит, при погружении в воду корона потеряет в весе больше и весы изменят своё положение, - сказал Архимед и осторожно погрузил обе чаши весов в воду. Чаша с короной немедленно поднялась вверх.

Ты поистине великий учёный! - воскликнул царь. - Теперь я смогу заказать себе новую корону и проверить - настоящая она или нет.

Архимед спрятал в бороде усмешку: он понимал, что закон, открытый им накануне, гораздо ценнее тысячи золотых корон.

Закон Архимеда остался в истории навсегда, им пользуются при проектировании любых кораблей. Сотни тысяч судов бороздят океаны, моря и реки, и каждое из них держится на поверхности воды благодаря силе, открытой Архимедом.

Когда Архимед состарился, его размеренные занятия наукой неожиданно закончились, впрочем как и спокойная жизнь горожан, - быстро растущая Римская империя решила завоевать плодородный остров Сицилию.

В 212 году до н.э. огромный флот галер, набитых римскими воинами, подошёл к острову. Преимущество в силе римлян было очевидным, и командующий флотом нисколько не сомневался, что Сиракузы будут захвачены очень быстро. Но не тут-то было: стоило галерам подойти к городу, как со стен ударили мощные катапульты. Они бросали тяжёлые камни так точно, что галеры захватчиков разлетались в щепки.

Римский полководец не растерялся и скомандовал капитанам своего флота:

Подойдите к самым стенам города! На близком расстоянии катапульты будут нам не страшны, а лучники смогут прицельно стрелять.

Когда флот с потерями прорвался к городским стенам и приготовился его штурмовать, римлян ждал новый сюрприз: теперь уже лёгкие метательные машины забросали их градом ядер. Спускаемые крюки мощных подъёмных кранов цепляли римские галеры за носы и поднимали их в воздух. Галеры переворачивались, падали вниз и тонули.

Знаменитый историк древности Полибий писал о штурме Сиракуз: «Римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузцев одного старца». Этим старцем был Архимед, который сконструировал метательные машины и мощные подъёмные краны для защиты города.

Быстрый захват Сиракуз не получился, и римский полководец дал команду отступить. Сильно поредевший флот отошёл на безопасное расстояние. Город стойко держался благодаря инженерному гению Архимеда и мужеству горожан. Лазутчики донесли римскому полководцу имя учёного, который создал столь неприступную оборону. Полководец решил, что после победы нужно заполучить Архимеда как самый ценный военный трофей, ведь он один стоил целой армии!

День за днём, месяц за месяцем мужчины дежурили на стенах, стреляли из луков и заряжали катапульты тяжёлыми камнями, которые, увы, не достигали цели. Мальчишки подносили солдатам воду и еду, но воевать им не давали - малы ещё!

Архимед был стар, он, как и дети, не мог стрелять из лука так далеко, как молодые и сильные мужчины, но у него был могучий мозг. Архимед собрал мальчишек и спросил их, показывая на вражеские галеры:

Хотите уничтожить римский флот?

Мы готовы, говори, что делать!

Мудрый старец объяснил, что придётся серьёзно поработать. Он велел каждому мальчишке взять большой медный лист из уже приготовленной стопы и положить его на ровные каменные плиты.

Каждый из вас должен отполировать лист так, чтобы он сиял на солнце, как золотой. И тогда завтра я покажу вам, как потопить римские галеры. Работайте, друзья! Чем лучше вы сегодня отполируете медь, тем легче нам будет завтра воевать.

А мы сами будем воевать? - спросил маленький кудрявый мальчуган.

Да, - твёрдо сказал Архимед, - завтра вы все будете на поле боя наравне с воинами. Каждый из вас сможет совершить подвиг, и тогда о вас будут складывать легенды и песни.

Трудно описать энтузиазм, который охватил мальчишек после речи Архимеда, и они энергично взялись надраивать свои медные листы.

Назавтра, в полдень, солнце обжигающе пылало в небе, а римский флот неподвижно стоял на якорях на внешнем рейде. Деревянные борта вражеских галер разогрелись на солнце и сочились смолой, которую использовали для защиты кораблей от протечек.

На крепостных стенах Сиракуз, там, куда не доставали вражеские стрелы, собрались десятки подростков. Перед каждым из них стоял деревянный щит с отполированным медным листом. Опоры щита были сделаны так, что лист меди можно было легко поворачивать и наклонять.

Вот сейчас мы и проверим, как хорошо вы отполировали медь, - обратился к ним Архимед. - Надеюсь, все умеют пускать солнечные зайчики?

Архимед подошёл к маленькому кудрявому мальчику и сказал:

Поймай своим зеркалом солнце и направь солнечный зайчик в середину борта большой чёрной галеры, как раз под мачтой.

Мальчишка бросился выполнять указание, а воины, столпившиеся на стенах, удивлённо переглянулись: что ещё затеял хитрец Архимед?

Учёный остался доволен результатом - на боку чёрной галеры появилось световое пятно. Тогда он обратился к остальным подросткам:

Наведите свои зеркала в то же место!

Заскрипели деревянные опоры, загремели медные листы - стая солнечных зайчиков сбежалась к чёрной галере, и её бок стал наливаться ярким светом. На палубы галер высыпали римляне - что происходит? Вышел главнокомандующий и тоже уставился на сверкающие зеркала на стенах осаждённого города. Боги Олимпа, что ещё придумали эти упрямые сиракузцы?

Архимед инструктировал своё воинство:

Не спускайте глаз с солнечных зайчиков - пусть они всё время будут направлены в одно место.

Не прошло и минуты, как от сияющего пятна на борту чёрной галеры повалил дым.

Воды, воды! - закричали римляне. Кто-то бросился черпать забортную воду, но дым быстро сменился пламенем. Сухое просмолённое дерево прекрасно горело!

Переведите зеркала на соседнюю галеру справа! - скомандовал Архимед.

Считаные минуты - и соседняя галера тоже занялась огнём. Римский флотоводец вышел из оцепенения и приказал сниматься с якоря, чтобы отойти подальше от стен проклятого города с его главным защитником Архимедом.

Сняться с якорей, посадить гребцов на вёсла, развернуть огромные корабли и отвести их в море на безопасное расстояние - дело не быстрое. Пока римляне суматошно бегали по палубам, задыхаясь от удушливого дыма, юные сиракузцы переводили зеркала на новые корабли. В суматохе галеры подходили друг к другу так близко, что огонь перекидывался с одного судна на другое. Спеша отплыть, некоторые корабли развернули паруса, которые, как оказалось, горели ничуть не хуже смоляных бортов.

Вскоре сражение было окончено. На рейде догорало множество римских кораблей, а остатки флота отступили от стен города. Среди юного воинства Архимеда потерь не было.

Слава великому Архимеду! - кричали восхищённые жители Сиракуз и благодарили и обнимали своих детей. Могучий воин в блестящих доспехах крепко пожал руку кудрявому мальчику. Его маленькая ладонь была покрыта кровавыми мозолями и ссадинами от полировки медного листа, но он даже не поморщился при рукопожатии.

Молодец! - уважительно сказал воин. - Этот день сиракузцы запомнят надолго.

Прошло два тысячелетия, а этот день остался в истории, и запомнили его не только сиракузцы. Жители разных стран знают удивительную историю о сожжении Архимедом римских галер, но он один ничего бы не сделал без своих юных помощников. Кстати, совсем недавно, уже в ХХ веке нашей эры, учёные провели эксперименты, которые подтвердили полную работоспособность древнего «сверхоружия», изобретённого Архимедом для защиты Сиракуз от захватчиков. Хотя есть историки, считающие это легендой…

Эх, жаль, меня там не было! - воскликнула Галатея, внимательно слушавшая вместе с братом вечернюю сказку, которую рассказывала им мать - принцесса Дзинтара. Та продолжила читать книгу:

Потеряв надежду захватить город с помощью оружия, римский полководец прибег к старому испытанному способу - подкупу. Он нашёл в городе предателей, и Сиракузы пали. Римляне ворвались в город.

Найдите мне Архимеда! - приказал командующий. Но солдаты, опьянённые победой, плохо понимали, чего он от них хочет. Они врывались в дома, грабили и убивали. Один из воинов выбежал на площадь, где работал Архимед, рисуя на песке сложную геометрическую фигуру. Солдатские башмаки затоптали хрупкий рисунок.

Не тронь моих чертежей! - грозно сказал Архимед.

Римлянин не узнал учёного и в гневе ударил его мечом. Так погиб этот великий человек.

Известность Архимеда была столь велика, что книги его часто переписывали, благодаря чему ряд трудов сохранился до нашего времени, несмотря на пожары и войны двух тысячелетий. История дошедших до нас книг Архимеда нередко была драматической. Известно, что в XIII веке какой-то невежественный монах взял книгу Архимеда, написанную на прочном пергаменте, и смыл формулы великого учёного, чтобы получить чистые страницы для записи молитв. Прошли века, и этот молитвенник попал в руки других учёных. Они с помощью сильной лупы исследовали его страницы и различили следы стёртого драгоценного текста Архимеда. Книга гениального учёного была восстановлена и напечатана большим тиражом. Теперь она уже никогда не исчезнет.

Архимед был настоящим гением, сделавшим множество открытий и изобретений. Он опередил своих со-временников даже не на века - на тысячелетия.

В книге «Псаммит, или Исчисление песчинок» Архимед пересказал смелую теорию Аристарха Самосского, согласно которой в центре мира расположено большое Солнце. Архимед писал: «Аристарх Самосский... полагает, что неподвижные звёзды и Солнце не меняют своего места в пространстве, что Земля движется по окружности около Солнца, находящегося в его центре…» Архимед считал гелиоцентрическую теорию Самосского убедительной и использовал её, чтобы оценить размеры сферы неподвижных звёзд. Учёный даже построил планетарий, или «небесную сферу», где можно было наблюдать движение пяти планет, восход солнца и луны, её фазы и затмения.

Правило рычага, которое открыл Архимед, стало основой всей механики. И хотя рычаг был известен до Архимеда, он изложил его полную теорию и успешно применил её на практике. В Сиракузах он в одиночку спустил на воду новый многопалубный корабль царя Сиракуз, используя хитроумную систему блоков и рычагов. Именно тогда, оценив всю мощь своего изобретения, Архимед воскликнул: «Дайте мне точку опоры, и я переверну мир».

Неоценимы достижения Архимеда в области математики, которой, по словам Плутарха, он был просто одержим. Его главные математические открытия относятся к математическому анализу, где идеи учёного легли в основу интегрального и дифференциального исчисления. Огромное значение для развития математики имело вычисленное Архимедом отношение длины окружности к диаметру. Архимед дал приближение для числа π (Архимедова числа):

Своим наивысшим достижением учёный считал работы в области геометрии и, прежде всего, расчёт шара, вписанного в цилиндр.

Что за цилиндр и шар? - спросила Галатея. - Почему он так ими гордился?

Архимед сумел показать, что площадь и объём сферы относятся к площади и объёму описанного цилиндра как 2:3.

Дзинтара поднялась и сняла с полки модель земного шара, который был впаян внутрь прозрачного цилиндра так, что соприкасался с ним на полюсах и на экваторе.

Я с детства люблю эту геометрическую игрушку. Посмотрите, площадь шара равна площади четырёх кругов такого же радиуса или площади боковой стороны прозрачного цилиндра. Если добавить площади основания и верха цилиндра, то получится, что площадь цилиндра в полтора раза больше площади шара внутри него. То же самое соотношение выполняется для объёмов цилиндра и шара.

Архимед был восхищён полученным результатом. Он умел ценить красоту геометрических фигур и математических формул - именно поэтому не катапульта и не горящая галера украшают его могилу, а изображение шара, вписанного в цилиндр. Таково было желание великого учёного.

Жидкостей и газов, согласно которому на всякое тело, пог-руженное в жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа) и направленная по вертикали вверх.

Этот закон был открыт древнегреческим ученым Архимедом в III в. до н. э. Свои исследования Архимед описал в трактате «О плавающих телах», который считается одним из последних его научных трудов.

Ниже приведены выводы, следующие из закона Архимеда .

Действие жидкости и газа на погруженное в них тело.

Если погрузить в воду мячик, наполненный воздухом, и отпустить его, то он всплывет. То же самое произойдет со щепкой, с пробкой и многими другими телами. Какая же сила заставляет их всплывать?

На тело, погруженное в воду, со всех сторон действуют силы давления воды (рис. а ). В каж-дой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростати-ческое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих иа тело сверху.

Если заменить все силы давления , приложенные к погруженному в воду телу, одной (резуль-тирующей или равнодействующей) силой, оказывающей на тело то же самое действие, что и все эти отдельные силы вместе, то результирующая сила будет направлена вверх. Это и заставляет тело всплывать. Эта сила называется выталкивающей силой, или архимедовой силой (по имени Архимеда, который впервые указал на ее существование и установил, от чего она зависит). На рисунке б она обозначена как F A .

Архимедова (выталкивающая) сила действует на тело не только в воде, но и в любой другой жидкости, т. к. в любой жидкости существует гидростатическое давление, разное на разных глу-бинах. Эта сила действует и в газах, благодаря чему летают воздушные шары и дирижабли.

Благодаря выталкивающей силе вес любого тела, находящегося в воде (или в любой другой жидкости), оказывается меньше, чем в воздухе, а в воздухе меньше, чем в безвоздушном про-странстве. В этом легко убедиться, взвесив гирю с помощью учебного пружинного динамометра сначала в воздухе, а затем опустив ее в сосуд с водой.

Уменьшение веса происходит и при переносе тела из вакуума в воздух (или какой-либо другой газ).

Если вес тела в вакууме (например, в сосуде, из которого откачан воздух) равен P 0 , то его вес в воздухе равен:

,

где F´ A — архимедова сила, действующая на данное тело в воздухе. Для большинства тел эта сила ничтожно мала и ею можно пренебречь, т. е. можно считать, что P возд. =P 0 =mg .

Вес тела в жидкости уменьшается значительно сильнее, чем в воздухе. Если вес тела в воздухе P возд. =P 0 , то вес тела в жидкости равен P жидк = Р 0 — F A . Здесь F A — архимедова сила, действующая в жидкости. Отсюда следует, что

Поэтому чтобы найти архимедову силу, действующую на тело в какой-либо жидкости, нужно это тело взвесить в воздухе и в жидкости. Разность полученных значений и будет архимедовой (выталкивающей) силой.

Другими словами, учитывая формулу (1.32), можно сказать:

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.

Определить архимедову силу можно также теоретически. Для этого предположим, что тело, погруженное в жидкость, состоит из той же жидкости, в которую оно погружено. Мы имеем пра-во это предположить, так как силы давления, действующие на тело, погруженное в жидкость, не зависят от вещества, из которого оно сделано. Тогда приложенная к такому телу архимедова сила F A будет уравновешена действующей вниз силой тяжести m ж g (где m ж — масса жидкости в объеме данного тела):

Но сила тяжести равна весу вытесненной жидкости Р ж . Таким образом.

Учитывая, что масса жидкости равна произведению ее плотности ρ ж на объем, формулу (1.33) можно записать в виде:

где V ж — объем вытесненной жидкости. Этот объем равен объему той части тела, которая погру-жена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом V всего тела; если же тело погружено в жидкость частично, то объем V ж вытесненной жидкости меньше объема V тела (рис. 1.39).

Формула (1.33) справедлива и для архимедовой силы, действующей в газе. Только в этом слу-чае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.

С учетом вышеизложенного закон Архимеда можно сформулировать так:

На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или га-за), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).

ОСАДКА КОРАБЛЯ

Попробуйте вырезать из толстой сосновой коры кораблик. Дно его надо снабдить килем из железной пластинки. Пустите кораблик на воду и по границе его погружения проведите черту (масляной красной краской). Сделав раствор соли, налейте этот раствор в глубокий таз и снова пустите в него плавать кораблик. Глубину его погружения в солёной воде надо снова отметить чертой, только другого цвета (белой, голубой). Как объяснить различную глубину погружения кораблика в первом и во втором случае?

ПЛАВАЕТ ЛИ ЯЙЦО?

Опустите свежее сырое яйцо в банку с водой. Яйцо потонет. В воду подсыпьте соли, слегка помешивая, яйцо не трогать. По мере того как солёность воды увеличивается, яйцо начинает всплывать, а при насыщенном растворе соли яйцо всплывёт на поверхность воды.

ПРОБКА В БУТЫЛКЕ

Если в бутылку с водой поместить небольшую пробку и попытаться затем эту пробку вылить с водой из бутылки, то это не всегда удаётся.

Каждый раз когда выливаетдя вода, пробка прибивается ко дну бутылки. И только с последней порцией воды можно вылить и пробку из бутылки.
Попробуйте проверить это на опыте и объяснить!

ВОДЯНОЙ ПОДСВЕЧНИК

Бросьте в воду стеариновую свечу. Она будет плавать, лежа на боку. Так свечу не зажжешь. Надо нижний конец утяжелить гвоздем. Только не пытайтесь воткнуть этот гвоздь силой: стеарин раскрошится. Гвоздь надо нагреть, тогда он войдет, как в масло, и будет хорошо держаться.

Подберите такой гвоздь, чтобы почти вся свеча погрузилась в воду. Только фитиль и самый краешек стеарина должны остаться над поверхностью. Стакан с водой, в котором плавает эта свеча, окажется неплохим подсвечником. Зажгите фитиль, и свеча будет гореть довольно долго.

Но почему же? И как долго будет гореть свеча?
Ведь она вот-вот догорит до воды и погаснет?
Но этого не происходит. Вода охлаждает стеарин снаружи. Поэтому края свечи будут таять медленнее и вокруг фитиля образуется глубокая воронка. Свеча превратится в стеариновый кораблик, она будет постепенно всплывать. И хотя стеарина остается все меньше, даже маленький огарок, утяжеленный гвоздем, не пойдет ко дну. Свеча выгорит почти до самого конца.

Как объяснить это явление?
В процессе горения постепенно убывает сила тяжести свечи. Для ее равновесия выталкивающая сила должна уменьшаться, а это возможно только с подъемом свечи.

Кстати, наш подсвечник имеет одно важное преимущество. Догоревшая свеча никогда не наделает пожара: фитиль будет погашен водой.

ТОНЕТ ИЛИ ПЛАВАЕТ

Возьмите маленький стеклянный пузырек из-под лекарства и наберите в него столько воды, чтобы сила тяжести пузырька вместе с водой в нем была незначительно больше выталкивающей силы. В высокий стакан с водой опустите пузырек вверх дном, он потонет. Нагрейте стакан.

Почему через некоторое время пузырек поднимается вверх?
При нагревании давление воздуха в пузырьке увеличивается и часть воды из него вытекает. Общая сила тяжести пузырька с водой становится меньше выталкивающей силы, и пузырек всплывает.

СПЕЦИАЛЬНО ДЛЯ ТОНУЩИХ

Часто можно наблюдать, как тонущий человек, взывая о помощи, поднимает руки из воды.
Правильно ли он поступает?

Оказывается, нет. В этом можно убедиться на опыте. Для опыта возьмите пробирку с пробкой. В пробку вставьте проволоку, на концах которой укрепите две деревянные палочки - спички. В пробирку подлейте воды или насыпьте дроби или положите кусочек пластилина.

Две палочки и пробка изображают соответственно руки и голову человека. Если палочки поднять вверх, то при опускании пробирки в воду пробка окажется под водой (А). Отогните палочки вниз. Если сейчас опустить пробирку в воду, пробка оказывается над водой (Б).

Как объясните наблюдаемое явление?
Указанная пробирка ведет себя, как тело, плавающее на поверхности воды. Ее сила тяжести уравновешивается архиме­довой силой, равной силе тяжести воды, вытесненной пробиркой. Причем часть объема пробирки находится над водой. В первом случае он равен объему палочек, находящихся над водой, во втором он обусловлен частью пробки.

ОПЫТ СО СПИЧКАМИ

Несколько спичек подержите в воде сутки. Затем опустите их в бутылку, до краев наполненную водой. Возьмите пластмассовую пробку в виде наперстка, наденьте ее на указательный палец. Закройте пробкой горлышко бутылки и производите через пробку на воду давление. С увеличением давления спички тонут, с уменьшением - всплывают. Изменяя давление, можно заставить их плавать в воде на любой глубине.

Как это объяснить?
Явление объясняется законом Паскаля и архимедовой силой. Внутри спичек имеются пузырьки воздуха. При увеличении давления пузырьки уменьшаются. Общая сила тяжести спичек с водой становится больше выталкивающей силы, и они тонут. При уменьшении давления пузырьки увеличиваются в объеме. Общая сила тяжести спичек с водой становится меньше выталкивающей силы, и они всплывают.

«УДИВИТЕЛЬНОЕ ЯЙЦО»

Опустите яйцо в стеклянный сосуд, наполовину заполненный жидкостью. Оно плавает на поверхности.

А что будет с яйцом, если подлить в сосуд воды?
Обычно отвечают, что яйцо всплывет. Подливайте осторожно воду через воронку по стенке сосуда, пока он не наполнится. Яйцо, к удивлению зрителей, остается на старом уровне (высоте).

Почему?
Вначале в сосуд был налит водный раствор поваренной соли, на поверхности которого яйцо плавало. Затем подливали воду, плотность которой меньше плотности яйца. Этот опыт можно провести и с картофелем.

ТОНЕТ ЛИ ТАРЕЛКА?

Возьмите блюдце и опустите его на воду ребром, оно тонет. Если блюдце опустите на воду дном, оно плавает на поверхности.

Почему?
Фарфор или фаянс обладает большей плотностью, чем вода, поэтому при опускании блюдца ребром оно тонет.
При опускании блюдца дном на воду оно погружается в воду на такую глубину, при которой объем вытесненной воды по силе тяжести равен силе тяжести блюдца, что соответствует условию плавания тел на поверхности воды.

ЗАГАДКА ВЕСОВ

Положите на стол круглый карандаш, закрепите его с двух концов липкой лентой. Налейте в два стакана примерно одинаковое количество воды, положите поперек карандаша линейку (лучше деревянную, чтобы не гнулась) и поставьте стаканы с водой на концы этой линейки. Немного подвигайте линейку или стаканы, но добейтесь, чтобы вся система была в равновесии и ни один из стаканов не касался бы стола. Получились уравновешенные весы.

Теперь ответьте на такой вопрос: если сунуть палец в один из стаканов, не касаясь его стенок, то какой из стаканов перевесит?
Или, может быть, ничего не изменится?
Почему?

А теперь проверьте свой ответ. Да-да, суньте палец в воду, только стенок не касайтесь.
И последний вопрос: а что, если сунуть в воду копию вашего пальца из пластилина? А из дерева? А из свинца?

Если всунуть палец в стакан, видно, что вытесненная им вода поднимется выше прежнего уровня. Значит, если бы эта вытесненная вода просто вылилась из стакана, вес его (с пальцем, заполняющим объем вытесненной воды) не изменился бы. Но вытесненная пальцем вода по-прежнему, здесь, в стакане, а значит, стакан этот весит больше, чем другой, причем ровно на вес объема вытесненной воды. И совсем неважно, вытеснили мы этот объем собственным пальцем, его копией из пластилина или же из дерева или свинца.

Источники: Л.А. Горев "Занимательные опыты по физике"; Ф. Рабиза "Опыты без приборов"

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа) . Сила называется силой Архимеда :

где - плотностьжидкости (газа), - ускорение свободного падения, а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плаваетна поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена кцентру тяжестиэтого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.

где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

18. Равновесие тела в покоящейся жидкости

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. P выт = ρ ж gV погр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V - объем плавающего тела; ρ m - плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется остойчивостью . Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением , а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения . При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O"-O" , представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K"L"M" , наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d" . Приложим к точке d" подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O"-O" . Полученная точка m называется метацентром , а отрезок mC = h называется метацентрической высотой . Будем считать h положительным, если точка m лежит выше точки C , и отрицательным - в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) если h <0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама