THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Система (греческое systema - целое, составленное из частей, соединения) – совокупность взаимодействия элементов, объединенных единством целей и образующих определенную целостность; это целенаправленное множество взаимосвязанных элементов любой природы; это объект, который определяется множествами элементов, преобразований, правил образования последовательностей элементов; это объект, состоящий из элементов, свойства которых не сводятся к свойству самого объекта.

Основные свойства систем : 1. Организованная сложность системы характеризуется наличием взаимосвязи между элементами (существует три типа связи: функционально-необходимые, избыточные (резервные), сингерические (дающие увеличение эффекта системы за счет взаимодействия элементов)). 2. Декомпоризуемость. 3. Целостность системы - принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов, и, в то же время, зависимость свойств каждого элемента от его места и функций внутри системы. 4. Ограниченность системы. Ограниченность системы связана с внешней средой. В понятие внешняя среда включают все системы элементов любой природы, оказывающие влияние на систему или находящиеся под ее воздействием. Возникает задача локализации системы (определения ее границ и существенных связей). Выделяют открытые и замкнутые системы. Открытые системы имеют связи с внешней средой, закрытые не имеют. 5. Структурность системы. Структурность - группирование элементов внутри системы по определенному правилу или принципу в подсистемы. Структура системы – совокупность связей между элементами системы, отражающих их взаимодействие. Разделяют связи двух типов: горизон­тальные и вертикальные. Внешние связи, направленные внутрь системы называют входами, из системы во внешнюю среду - выходами. Внутренние связи - связи между подсистемами. 6. Функциональная направленность системы, функции системы можно представить в виде набора некоторых преобразований, которые делятся на две группы.

Виды систем: 1. Простая система – это система, которая состоит из небольшого числа элементов, не имеющая разветвленной структуры (нельзя выделить иерархические уровни). 2. Сложная система – это система с разветвленной структурой и значительным количеством взаимосвязанных и взаимодействующих элементов (подсистем). Под сложной динамической системой следует понимать развивающиеся во времени и в пространстве целостные объекты, состоящие из большого числа элементов и связей и обладающие свойствами, которые отсутствуют у элементов и связей, их образующих. Структура системы – совокупность внутренних, устойчивых связей между элементами системы, определяющих ее основные свойства. Системы бывают: социальные, биологические, механические, химические, экологические, простые, сложные, вероятностные, детерминированные, стохастические. 3. Централизованная система – система, в которой некоторый элемент (подсистема) играет доминирующую роль. 4. Децентрализованная система – система, в которой нет доминирующей подсистемы. 5. Организационная система – система, которая представляет собой набор людей или коллективов людей. 6. Открытые системы – такие, в которых внутренние процессы существенно зависят от условий среды и сами оказывают на ее элементы значительное влияние. 7. Замкнутые (закрытые) системы – такие, в которых внутренние процессы слабо связаны с внешней средой. Функционирование закрытых систем определяется внутренней информацией. 8. Детерминированные системы – системы, в которой связи между элементами и событиями носят однозначный, предопределенный характер. 9. Вероятностная (стохастическая) система – такая система, в которой связи между элементами и событиями носят неоднозначный характер. Связи между элементами носят вероятностный характер и существуют в виде вероятностных закономерностей. 10. Детерминированные системы являются частным случаем вероятностных (Рв=1). 11. Динамичная система – система, характер которой непрерывно меняется. При этом переход в новое состояние не может совершаться мгновенно, а требует некоторого времени.

Этапы построения систем: постановка цели, декомпозиция цели на подцели, определение функций, обеспечивающих достижение цели, синтез структуры, обеспечивающий выполнение функций. Цели возникают, когда существует так называемая проблемная ситуация (проблемная ситуация – это ситуация, которую нельзя разрешить имеющимися средствами). Цель – состояние, к которому направлена тенденция движения объекта. Среда – совокупность всех систем, кроме той, которая реализует заданную цель. Ни одна система не является абсолютно замкнутой. Взаимодействие системы со средой реализуется через внешние связи. Элемент системы – часть системы, имеющая определенное функциональное значение. Связи могут быть входными и выходными. Они подразделяются на: информационные, ресурсные (управляющие).

Структура системы : представляет собой устойчивую упорядоченность элементов системы и их связей в пространстве и во времени. Структура может быть материальной и формальной. Формальная структура – совокупность функциональных элементов и их отношений, необходимых и достаточных для достижения системой заданных целей. Материальная структура – реальное наполнение формальной структуры.Типы структур систем: последовательный или цепочечный; иерархический; циклически замкнутая (типа кольцо); структура типа «колесо»; «звезда»; структура типа «решетка».

Сложная система характеризуется : единой целью функционирования; иерархической системой управления; большим количеством связей внутри системы; комплексным составом системы; устойчивостью к воздействию внешних и внутренних воздействующих факторов; наличием элементов саморегуляции; наличием подсистем.

Свойства сложных систем : 1. Многоуровневость (часть системы сама является системой. Вся система, в свою очередь, является частью более крупной системы); 2. Наличие внешней среды (всякая система ведет себя в зависимости от того, в какой внешней среде она находится. Нельзя механически распространять выводы, полученные о системе в одних внешних условиях, на ту же систему, находящуюся в других внешних условиях); 3. Динамичность (в системах нет ничего неизменного. Все константы и статические состояния - это только абстракции, справедливые в ограниченных пределах); 4. У человека, длительное время работавшего с какой-либо сложной системой, может сложиться уверенность, что те или иные "очевидные" изменения, если их внести в систему, приведут к тем или иным "очевидным" улучшениям. Когда же изменения реализуются, система отвечает совсем не так, как предполагалось. Это случается при попытках реформы управления большим предприятием, при реформировании государства и т.д. Причиной подобных ошибок является недостаток информации о системе как результат неосознанного механистического подхода. Методологический вывод по таким ситуациям состоит в том, что сложные системы не меняются за один круг, нужно совершить много кругов, на каждом из которых в систему вносятся небольшие изменения, и выполняются исследования их результатов с обязательными попытками выявления и анализа новых типов связей, проявляющихся в системе; 5. Устойчивость и старение (устойчивость системы - это ее способность компенсировать внешние или внутренние воздействия, направленные на разрушение или быстрое изменение системы. Старение - это ухудшение эффективности и постепенное разрушение системы за длительный период времени. 6. Целостность (система имеет целостность, которая есть самостоятельная новая сущность. Эта сущность само организуется, влияет на части системы и на связи между ними, заменяет их для сохранения себя как целостности, ориентируется во внешней среде и т.д.); 7. Полиструктурность - это наличие у одной и той же системы большого количества структур. Рассматривая систему с разных точек зрения, мы будем выявлять в ней разные структуры. Полиструктурность систем можно рассматривать как их многоаспектность. Функциональный аспект отражает поведение системы и ее частей только с точки зрения того, что они делают, какую исполняют функцию. При этом не принимаются во внимание вопросы о том, как они это делают и что они из себя представляют физически. Важно только лишь, чтобы из функций отдельных частей складывалась функция системы в целом. Конструкторский аспект охватывает только вопросы физической компоновки системы. Здесь важна форма составных частей, их материал, их размещение и стыковка в пространстве, внешний вид системы. Технологический аспект отражает то, как исполняются функции частями системы.

Какие типы взаимодействия являются короткодействующими? Привести примеры систем, в которых действуют эти силы

Слабое взаимодействие менее известно за пределами узкого круга физиков и астрономов, но это нисколько не умаляет его значения. Достаточно сказать, что если бы его не было, погасли бы Солнце и другие звезды, ибо в реакциях, обеспечивающих их свечение, слабое взаимодействие играет очень важную роль. Слабое взаимодействие относится к короткодействующим: его радиус примерно в 1000 раз меньше, чем у ядерных сил.

Сильное взаимодействие - самое мощное из всех остальных. Оно определяет связи только между адронами. Ядерные силы, действующие между нуклонами в атомном ядре, - проявление этого вида взаимодействия. Оно примерно в 100 раз сильнее электромагнитного. В отличие от последнего (а также гравитационного) оно, во-первых, короткодействующее на расстоянии, большем 10-15м (порядка размера ядра), соответствующие силы между протонами и нейтронами, резко уменьшаясь, перестают их связывать друг с другом. Во-вторых, его удается удовлетворительно описать только посредством трех зарядов (цветов), образующих сложные комбинации.

Важнейшей характеристикой фундаментального взаимодействия является его радиус действия. Радиус действия - это максимальное расстояние между частицами, за пределами которого их взаимодействием можно пренебречь. При малом радиусе взаимодействие называют короткодействующим, при большом - дальнодействующим. Сильное и слабое взаимодействия являются короткодействующими. Их интенсивность быстро убывает при увеличении расстояния между частицами. Такие взаимодействия проявляются на небольшом расстоянии, недоступном для восприятия органами чувств. По этой причине эти взаимодействия были открыты позже других (лишь в XX веке) с помощью сложных экспериментальных установок. Для объяснения малого радиуса действия ядерных сил японский физик Х. Юкава в 1935 высказал гипотезу, согласно которой С. в. между нуклонами (N) происходит благодаря тому, что они обмениваются друг с другом некоторой частицей, обладающей массой, аналогично тому, как электромагнитное взаимодействие между заряженными частицами, согласно квантовой электродинамике, осуществляется посредством обмена "частицами света" - фотонами. При этом предполагалось, что существует специфическое взаимодействие, приводящее к испусканию и поглощению промежуточной частицы - переносчика ядерных сил. Другими словами, вводился новый тип взаимодействий, который позже назвали сильные взаимодействия. Исходя из известного экспериментального радиуса действия ядерных сил, Юкава оценил массу частицы - переносчика с. в. Такая оценка основана на простых квантовомеханических соображениях. Согласно квантовой механике, время наблюдения системы?t и неопределённость в её энергии?E связаны соотношением: ?E?t Сильные взаимодействия h, где h -планка постоянная. Поэтому, если свободный нуклон испускает частицу с массой m (т. е. энергия системы меняется согласно формуле относительности теории на величину?E = mc2, где с - скорость света), то это может происходить лишь на время?t Сильные взаимодействия h/mc2. За это время частица, движущаяся со скоростью, приближающейся к предельно возможной скорости света с, может пройти расстояние порядка h/mc. Следовательно, чтобы взаимодействие между двумя частицами осуществлялось путём обмена частицей массы т, расстояние между этими частицами должно быть порядка (или меньше) h/mc, т. е. радиус действия сил, переносимых частицей с массой m, должен составлять величину h/mc. При радиусе действия Сильные взаимодействия10-13 см масса переносчика ядерных сил должна быть около 300 me (где me - масса электрона), или приблизительно в 6 раз меньше массы нуклона. Такая частица была обнаружена в 1947 и названа пи-мезоном (пионом, ?). В дальнейшем выяснилось, что картина взаимодействия значительно сложнее. Оказалось, что, помимо заряженных?± и нейтрального?0-мезонов с массами соответственно 273 те и 264 me, взаимодействие передаётся большим числом др. мезонов с большими массами: ?, ?, ?, К,... и т. д. Кроме того, определенный вклад в С. в. (например, между мезонами и нуклонами) даёт обмен самими нуклонами и антинуклонами и их возбуждёнными состояниями барионными резонансами. Из соотношения неопределённостей следует, что обмен частицами, имеющими массы больше массы пиона, происходит на расстояниях, меньших 10-13 см, т. е. определяет характер С. в. на малых расстояниях, экспериментальное изучение различных реакций с адронами (таких, например, как реакции с передачей заряда - "перезарядкой": ?- + р > ?0 + n, К- + р > K0 + n и др.) позволяет в принципе выяснить, какой вклад в С. в. даёт обмен теми или иными частицами.

Базовым понятием математического моделирования является понятие системы . Система в широком смысле - эквивалент понятия математической модели и задается парой множеств U, Y (U - множество входов, Y - множество выходов) и отношением на , формализующим связь (зависимость) между входами и выходами.

Соединение систем также является системой и задается отношением. Например, последовательное соединение систем , есть отношение такое, что , если существуют , удовлетворяющие условиям , , , где - отношение, определяющее связь между и . Таким образом можно определять сколь угодно сложные си­стемы, исходя из простых.

Приведенное определение отражает в абстрактном виде атрибуты (свойства), присущие нашему интуитивному представлению о системе: целостность и структурированность .

Целостность (единство) означает, что система отделена от внешней среды; среда может оказывать на нее действие (акцию) через входы и воспринимать отклик (реакцию) на эти действия через выходы.

Структурированность означает, что система разделена внутри на несколько подсистем, связанных и взаимодействующих между собой так же, как целая система взаимодействует с внешней средой.

Третье свойство, присущее системе, - целенаправленность - требует задания некоторой цели, достижение которой говорит о правильной работе системы.

Приведем для сравнения другие, менее формальные определения системы.

Система - объективное единство закономерно связанных друг с другом предметов, явлений, а также знаний о природе и обществе (БСЭ. Т. 39. С. 158).

Система - совокупность взаимосвязанных элементов (объектов, отношений), представляющих единое целое. Свойства системы могут отсутствовать у составляющих ее элементов .



Приведенное выше формальное определение весьма общо; под него подпадают практически все виды математических мо­делей систем: дифференциальные и разностные уравнения, регрессионные модели, системы массового обслуживания, конечные и стохастические автоматы, дедуктивные системы (исчисления) и т.д. Можно трактовать как систему любой пре­образователь входных данных в выходные («черный ящик») (рис. 1.1,а). Например, системой можно назвать процесс решения любой задачи. При этом входами будут являться ис­ходные данные, выходами - результаты, а целью - правильное решение (рис. 1.1,б). Такой подход к системе подчер­кивает ее целенаправленность и ведет свое происхождение от исследования операций - научной дисциплины, зани­мающейся разработкой количественных методов обоснования решений. Основное понятие здесь - операция: действие, которое подвергается исследованию (проектирование, конструи­рование, управление, экономическая деятельность и т.д.). Операция соответствует некоторой системе. Входами этой системы являются элементы принимаемого решения, о проводимой операции, выходами - результаты проведения операции (показатели ее эффективности (рис. 1.1,в)). Для развития навыков системного подхода полезно искать примеры систем в окружающем мире. Некоторые примеры представлены в табл. 1.1.

Подчеркнем, что функционирование системы - это процесс, разворачивающийся во времени, т. е. множества возможных входов и выходов U, Y - это множества функций времени со значениями соответственно в множествах U, Y:

где Т - множество моментов времени, на котором рассматривается система.

Система называется функциональной (определенной), если каждой входной функции u(t ) соответствует единственная выходная функция y(t ). В противном случае система называется неопределенной. Неопределенность обычно возникает из-за неполноты информации о внешних условиях работы системы. Важным свойством, присущим реальным си­стемам, является причинность. Она означает, что если входные функции и совпадают при , т.е. при , то соответствующие выходные функ­ции удовлетворяют условию , т. е. «настоящее не зависит от будущего при заданном прошлом».

Числовые величины, связанные с системой, делятся на переменные и параметры. Параметры - это величины, кото­рые можно считать постоянными на промежутке времени рассмотрения системы. Остальные числовые величины являются переменными. Значения переменных и параметров определяют количественную информацию о системе. Оставшаяся информация, т.е. качественная, определяет структуру системы. Различие между переменными и параметрами, а также между параметрами и структурой может быть условным, однако оно полезно в методическом отношении. Так, типовым приемом построения ММ системы является параметризация - выбор в качестве ММ семейства функций, зависящих от конечного (обычно небольшого) количества чисел - параметров.


Таблица 1.1

Примеры систем

№ п/п Система Вход Выход Цель
Радиоприем­ник Радиоволны Звуковые волны Неискажен­ный звук
Проигрыва­тель Колебания иглы " "
Термометр Т° воздуха (Т) Высота столбика (h) Верное пока­зание
Водопроводный, кран Поворот ручки (угол φ) Струя воды (расход G) Заданный расход
Ученик Лекция учителя, текст в учебнике, книги, кино, телевизор Отметки, знания, поступки Хорошие отметки, хорошие поступки, хорошие знания
Учитель План урока, ответы учеников Лекции, задачи для контрольной, отметки "
Робот Команды Движения Точное испол­нение команд
Популяция зайцев в лесу Пища Численность Максимальная численность
Популяция лис в лесу " " "
Программа ЭВM решения уравнения ax 2 +bx + c=0 Коэффициенты а, b, с. Точность Е . Решение с заданной точ­ностью
Задача реше­ния уравнения ах г +bх + с=0 а, b, с Формула Правильная формула
Электромотор Электрический ток Вращение ротора Вращение с заданной частотой
Костер Дрова Тепло, свет Заданное количество тепла и света
Торговля Продукты, вещи Деньги Получение суммы денег = стоимости товара
Бюрократ Бумажка Бумажка Зарплата

Этапы системного анализа

Системный анализ в широком смысле - это методология (совокупность методических приемов) постановки и решения задач построения и исследования систем, тесно связанная с математическим моделированием. В более узком смысле системный анализ - методология формализации сложных (трудно формализуемых, плохо структурированных) задач. Системный анализ возник как обобщение приемов, накопленных в задачах исследования операций и управления в технике, экономике, военном деле.

Остановимся на различии в употреблении терминов «системный анализ» и «системный подход» . Системный анализ - это целенаправленная творческая деятельность человека, на основе которой обеспечивается представление исследуемого объекта в виде системы. Системный анализ характеризуется упорядоченным составом методических приемов исследования. Что касается термина «системный подход», то традиция его применения связывает его с исследованиями проводимыми многоаспектно, комплексно, с разных сторон изучая предмет или явление. Этот подход предполагает, что все частные задачи, решаемые на уровне подсистем, должны быть увязаны между собой и решаться с позиции целого (принцип системности). Системный анализ - более конструктивное направление, содержащее методику разделения процессов на этапы и подэтапы, систем на подсистемы, целей на подцели и т.д.

В системном анализе выработана определенная последовательность действий (этапов) при постановке и решении задач, которую будем называть алгоритмом (методикой) системного анализа (рис. 1.2). Эта методика помогает более осмысленно и грамотно ставить и решать прикладные задачи. Если на каком-то этапе возникают затруднения, то нужно вернуться на один из предыдущих этапов и изменить (модифицировать) его.

Если и это не помогает, то это значит, что задача оказалась слишком сложной и ее нужно разбить на несколько более простых подзадач, т.е. провести декомпозицию (см. подразд. 1.3). Каждую из полученных подзадач решают по той же методике. Для иллюстрации применения методики системного анализа приведем пример .

Пример. Рассмотрим автомобиль, находящийся перед гаражом на некотором расстоянии от него (рис. 1.3, а). Требуется поставить автомобиль в гараж и сделать это, по возможности, наилучшим образом. При решении попытаемся руководствоваться алгоритмом системного анализа (см. рис. 1.2).

Этап 1. Система: автомобиль и гараж (автомобиль, приближающийся к гаражу).

Этап 2. Вход: сила тяги двигателя. Выход: пройденный путь.

Этап 3. Цель: автомобиль должен проехать заданный путь и затормозить.

Этап 4. Построение ММ начинается с обозначения всех величин (переменных и постоянных), существенных для задачи. Введем следующие обозначения:

u (t )-сила тяги в момент времени t (вход);

y (t )-путь, пройденный к моменту t (выход);

у* - расстояние от автомобиля до гаража (параметр).

Затем выписываются все уравнения и соотношения, существующие между введенными величинами, как в школьных задачках на составление уравнений. Если возможных уравнений несколько, выбирают простейшее. В нашей задаче - это уравнение динамики (2-й закон Ньютона):

где m - масса автомобиля, а также начальные условия

0, =0. (1.1б)

Этап 5. Модель (1.1) достаточно хорошо изучена и в детальном анализе не нуждается. Укажем лишь, что она адекватна, если можно пренебречь размерами автомобиля, огра­ничением на его мощность, силами трения и сопротивления и другими более второстепенными факторами.

Этап 6. Простейший вариант формализации цели

где - момент остановки - оказывается неудовлетворительным, поскольку в (1.2) не формализовано само требование остановки ()=0 и, значит, неясно, как система будет вести себя при . Правильнее задать цель соотношением

При , (1.3)

из которого следует, в частности, что y(t)-0 при t>t*.

На первый взгляд, задача поставлена и можно переходить к ее решению, т.е. к этапу 8. Но, оказывается, однозначного решения задача не имеет: здравый смысл говорит о том, что существует бесконечно много способов достичь цели (1.3). Значит, нужно дополнить цель правилом отбора способов, позволяющим отвечать на вопрос: какой способ лучше. Зададимся следующим разумным правилом: тот способ считается лучшим, который быстрее приводит к цели. Формально новую цель можно записать так:

При , (1.4)

Но теперь физические соображения показывают, что решение поставленной задачи тривиально: искомый минимум в (1.4) равен нулю! Действительно, выбрав достаточно большую силу тяги, можно придать автомобилю как математическому объекту, описываемому ММ (1.1), сколь угодно большое ускорение и сколь угодно быстро переместить его на любое заданное расстояние. Видимо, требуется ввести какие-то ограничения, исключающие бессмысленные решения. Можно было бы усложнить ММ системы: учесть ограниченную мощность двигателя, его инерционность, силы трения и т.д. Однако разумнее попытаться остаться в рамках ММ (1.1) (1.4), введя дополнительно лишь ограничения на силу тяги

Таким образом, чтобы придать задаче смысл, нам пришлось возвратиться на этап 7.

Этап 8. Для решения задачи можно было бы применить мощный и хорошо разработанный аппарат теории оптимального управления (вариационное исчисление, принцип максимума Понтрягина и др., см., например ). Однако сначала надо попытаться решить задачу элементарными средствами. Для этого часто бывает полезно перейти к геометрической интерпретации задачи, чтобы привлечь нашу геометрическую интуицию. Естественная интерпретация (рис. 1.3, б) не дает ключа к решению, так как не позволяет в удобной форме представить ограничения на допустимые траектории движения автомобиля. Дело меняется коренным образом, если перейти к другой ММ. Введем новую переменную: (скорость). Тогда вместо (1.1) возникает уравнение

Г : график оптимальной траектории представляет собой трапецию.

Еще более сложные задачи (например, при введении ограничений на расход топлива в виде не имеют простого аналитического решения, подобного (1.9), и практически решаются лишь численно, с привлечением математического аппарата приближенной минимизации функционалов см., например, ). Однако и для них решение упрощенной задачи не теряет важности, поскольку оно позволяет получить начальное приближение к решению сложной задачи, установить качественные свойства решения сложной задачи, выявить факторы, наиболее сильно влияющие на решение сложной задачи, и, главное, соотнести результаты математического исследования со здравым смыслом.

Резюмируя сказанное, можно дать совет изучающему математическое моделирование: «не решай сложную задачу, не решив сначала более простую!».

Самолет - это летательный аппарат тяжелее воздуха с аэродинамическим принципом полета. Самолет представляет собой сложную динамическую систему с развитой иерархической структурой, состоящую из взаимосвязанных по назначению, месту и функционированию элементов; в нем можно выделить подсистемы создания подъемной и движущей сил, обеспечения устойчивости и управляемости, жизнеобеспечения, обеспечения выполнения целевой функции и др.

Вычислительная сеть – сложная система, которая состоит из вычислительных машин и сети передачи данных (сети связи). Основное назначение вычислительных сетей - обеспечение взаимодействия удаленных пользователей на основе обмена данными по сети и совместное использование сетевых ресурсов (вычислительных машин, прикладных программ и периферийных устройств).

Если объект обладает всеми признаками системы, то говорят, что он является системным . Приведенные примеры систем иллюстрируют наличие таких факторов системности, как:

· целостность и возможность декомпозиции на элементы (в вычислительной сети это вычислительные машины, средства связи и др.);

· наличие стабильных связей (отношений) между элементами ;

· упорядоченность (организация) элементов в определенную структуру ;

· наделение элементов параметрами;

· наличие интегративных свойств , которыми не обладают ни один из элементов системы;

· наличие множества законов, правил и операций с вышеперечисленными атрибутами системы;

· наличие цели функционирования и развития.

Системы разделяют на классы по различным признакам, и в зависимости от решаемой задачи можно выбирать разные принципы классификации. Признак или их совокупность, по которым объекты объединяются в классы, являются основанием классификации. Класс - это совокупность объек­тов, обладающих некоторыми признаками общности.

Классификаций систем в науке достаточно много. Так, например, одна из них предусматривает деление систем на два вида - абст­рактные и материальные.

Материальные системы являются объектами реального времени. Среди всего многообразия материальных сис­тем существуют естественные и искусственные системы.

Естественные системы представляют собой совокуп­ность объектов природы и подразделя­ются на астрокосмические и планетарные, физические и химические.

Искусственные системы – это со­вокупность социально-экономических или технических объектов. Они могут быть классифицирова­ны по нескольким признакам, главным из которых явля­ется роль человека в системе. По этому признаку можно выделить два класса систем: технические и организационно-экономические системы.

Абстрактные системы - это умозрительное представ­ление образов или моделей материальных систем, кото­рые подразделяются на описательные (логические) и сим­волические (математические).



Описательные системы есть результат дедуктивного или индуктивного представления материальных систем. Их можно рассматривать как системы понятий и определе­ний (совокупность представлений) о структуре, об основ­ных закономерностях состояний и о динамике матери­альных систем.

Символические системы представляют собой формали­зацию логических систем, они подразделяются на три класса:

статические математические системы или модели, которые можно рассматривать как описание средствами математического аппарата состояния материальных систем (уравнения состояния);

динамические математические системы или модели, которые можно рассматривать как математическую формализацию процессов материальных (или абстрактных) си­стем;

квазистатические (квазидинамические) системы, находящиеся в неустойчивом положении между статикой и динамикой, которые при одних воздействиях ведут себя как статические, а при других воздействиях - как дина­мические.

В научной литературе можно найти и другие типы классификаций.

· по виду отображаемого объекта - технические, биологические, социальные и т.п.;

· по характеру поведения - детерминированные, вероятностные, игровые;

· по типу целеустремленности - открытые и закрытые;

· по сложности структуры и поведения - простые и сложные;

· по виду научного направления , используемого для их моделирования - математические, физические, химические и др.;

· по степени организованности - хорошо организованные, плохо организованные и самоорганизующиеся.

Каждая система обладает определенными свойствами, связанными с ее функционированием. Наиболее часто выделяют следующие:

· синергичность - максимальный эффект деятельности системы достигается только в случае максимальной эффективности совместного функционирования её элементов для достижения общей цели;

· эмерджентность - появление у системы свойств, не присущих элементам системы; принципиальная несводимость свойства системы к сумме свойств составляющих её компонентов (неаддитивность);

· целенаправленность - наличие у системы цели (целей) и приоритет целей системы перед целями её элементов;

· альтернативность - функционирования и развития (организация или самоорганизация);

· структурность - возможна декомпозиция системы на компоненты, установление связей между ними;

· иерархичность - каждый компонент системы может рассматриваться как система; сама система также может рассматриваться как элемент некоторой надсистемы (суперсистемы);

· коммуникативность - существование сложной системы коммуникаций со средой в виде иерархии;

· адаптивность - стремление к состоянию устойчивого равновесия, которое предполагает адаптацию параметров системы к изменяющимся параметрам внешней среды;

· интегративность - наличие системообразующих, системосохраняющих факторов;

· эквифинальность - способность системы достигать состояний, не зависящих от исходных условий и определяющихся только параметрами системы.

Работа добавлена на сайт сайт: 2016-03-13

Заказать написание уникльной работы

">Вопросы входного контроля 3

  1. ">Сущность понятия «закономерность» 4
  2. ">Закономерности взаимодействия целого и частного 6
  3. ">Закономерности осуществимости систем 11
  4. ">Закономерности развития систем 14
  5. ">Закономерности целеобразования 16
  6. ">Список использованных источников 18

">Вопросы входного контроля:

  1. ">Что такое система? Приведите примеры различных систем.

">Система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство. Примеры: человек – это система биологическая, город Казань – система социально-экономическая, любое предприятие или организация – тоже система, телевизор – система, сотовый телефон – система, Периодическая система химических элементов Д. И. Менделеева – тоже система и т.д.

  1. ">Что такое закономерность?

">Закономерность – это объективная, необходимая, существенная, постоянно повторяющаяся связь или отношение между явлениями или процессами, которая порождает качественную определенность явлений и их свойства.

  1. ">Приведите примеры закономерностей?

">В биологии, например, говорят о закономерностях эволюции, к которым относят: параллелизм, когда один и тот же вид на различных географически отдаленных, но схожих по климату территориях развивается одинаково.

">Статистические закономерности. Например, несмотря на то, что конкретными примерами наибольшей продолжительности жизни являются мужчины (азербайджанец Ширали Мислимов прожил 168 лет (1805-1973)), закономерность считается, что в среднем женщины живут дольше мужчин на 10-15 лет.

">

  1. ">Сущность понятия закономерность. Понятия целого и части и их отношения с понятиями «система» и «элемент»

">На сегодняшний день однозначного понятия закономерности не существует. Различные авторы приводят разные трактовки данного понятия:

">Закономерность – это объективная, повторяющаяся при определенных условиях существенная связь явлений в природе и обществе. [Толковый словарь] Данный источник делает акцент на том, что закономерность это явление не зависящее от мышления человека (объективное) и циклически повторяющееся.

">Закономерность - мера вероятности наступления какого-то события или явления либо их взаимосвязи. [Добреньков В. Кравченко А.]

">Закономерности систем - это общесистемные закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем [Волкова, Емельянов].

">Понятие «система» и «целое», как и понятия «элемент» и «часть», близки по содержанию, но полностью не совпадают. Согласно одному из определений, «целым называется (1) то, у чего не отсутствует ни одна из тех частей, состоя из которых оно именуется целым от природы, а также (2) то, что так объемлет объемлемые им вещи, что последние образуют нечто одно» (Аристотель).

">Понятие «целое» по своему объему уже понятия системы. Системами являются не только целостные, но и суммативные системы, не принадлежащие к классу целостных. В этом первое отличие «целого» от «системы». Второе: в понятии «целое» акцент делается на специфичности, на единстве системного образования, а в понятии «система» - на единстве в многообразии. Целое соотносимо с частью, а система - с элементами и структурой.

">Понятие «часть» уже по своему объему, чем понятие «элемент» по первой линии отличия целостных образований от систем. С другой стороны, в части могут входить не только субстратные элементы, но и те или иные фрагменты структуры (совокупности отношений) и структура систем в целом. Если соотношение элементов и системы есть соотношение разных структурных уровней (или подуровней) организации материи, то соотношение частей и целого есть соотношение на одном и том же уровне структурной организации. «Часть, как таковая, имеет смысл только по отношению к целому, она несет на себе черты его качественной определенности и не существует самостоятельно. В отличие от части элемент является определенным компонентом любой системы, относительным пределом ее делимости, означающим переход к следующему, соответственно более низкому по организации уровню развития материи, и, следовательно, по отношению к системе всегда будет объектом иного качества» (О. С. Зелькина).

">«Целое» и «часть» - это не совпадающие, противоположные категории. В части - не только специфичность целого, но и индивидуальность, своеобразие, зависящее от природы исходного элемента. Часть отделена от целого, обладает относительной автономностью, выполняет свои функции в составе целого (одни части - более существенные функции, другие - менее существенные). Наряду с этим «целое управляет частью... по крайней мере в главном» (И. Дицген).

">Наиболее распространенная классификация закономерностей развития систем приведена на рисунке 1.1

">Рис 1.1. Классификация закономерностей развития систем ">

  1. ">Закономерности взаимодействия целого и частного

">Закономерность целостности (эмерджентности) ">- закономерность, проявляющаяся в системе в виде возникновения, появления (emerge - появляться) у нее новых свойств, отсутствующих у элементов.

">Для того чтобы глубже понять закономерность целостности, необходимо прежде всего учитывать три ее стороны:

">1) свойства системы (" xml:lang="en-US" lang="en-US">Q ;vertical-align:sub" xml:lang="en-US" lang="en-US">s ">) не являются суммой свойств составляющих её элементов " xml:lang="en-US" lang="en-US">q ;vertical-align:sub" xml:lang="en-US" lang="en-US">i "> :

">2) свойства системы зависят от свойств составляющих её элементов:

">3) объединенные в систему элементы, как правило, утрачивают часть своих свойств, присущих им вне системы, т.е. система как бы подавляет ряд свойств элементов, но, с другой стороны, элементы, попав в систему, могут приобрести новые свойства.

">Свойство целостности тесно связано ">с целью ">, для выполнения которой создается система. При этом если цель не задана в явном виде, а у отображаемого объекта наблюдаются целостные свойства, можно попытаться определить цель или выражение, связывающее цель со средствами ее достижения (целевую функцию, системообразующий критерий), путем изучения причин появления закономерности целостности.

">Наряду с изучением причин возникновения целостности можно получать полезные для практики результаты путем сравнительной оценки степени целостности систем (и их структур) при неизвестных причинах ее возникновения.

">Закономерность интегративности. ">Интегративность определяет наличие специфических качеств системы, присущих только ей. Данные качества формируются определенной совокупностью элементов, которые не могут в отдельности воспроизвести качества системы. Интегративность системы часто употребляется как синоним целостности, но им подчеркивается интерес не к внешним фактам проявления целостности, а к более глубоким причинам формирования этого свойства. Интегративными называют системообразующие, системосохраняющие факторы, важными среди которых являются неоднородность и непротиворечивость ее элементов.

">Закономерность коммуникативности ">. Эта закономерность составляет основу определения системы, предложенного В. Н. Садовским и Э. Г. Юдиным, из которого следует, что система не изолирована от других систем, она связана множеством коммуникаций с внешней средой. Последняя представляет собой сложное и неоднородное образование, которое, в свою очередь, содержит систему более высокого порядка или надсистему (или надсистемы), задающую требования и ограничения исследуемой системе. Кроме этого, она может содержать также подсистемы (нижележащие, подведомственные системы) и системы одного уровня с уровнем рассматриваемой.

">Таким образом, закономерность коммуникативности предполагает, что система образует особое, сложное единство со средой, которое позволяет вскрыть механизмы построения общих моделей живой и неживой природы, а также любых выде­ленных из нее локальных систем на разных уровнях анализа.

">В силу закономерности коммуникативности, которая проявляется не только между выделенной системой и ее окружением, но и между уровнями иерархии исследуемой системы, каждый уровень иерархической упорядоченности имеет сложные взаимоотношения с вышестоящим и нижележащим уровнями.

">Первооткрывателем "> закономерности иерархичности или иерархической упорядоченности ">можно считать Л. фон Берталанфи, который показал связь иерархической упорядоченности мира с явлениями дифференциации и негэнтропийными тенденциями, т.е. с ">закономерностями самоорганизации ">, развития ">открытых систем ">.

">При анализе и изучении систем необходимо учитывать учитывать не только внешнюю структурную сторону иерархии, но и функциональные взаимоотношения между уровнями. Более высокий иерархический уровень оказывает ">направляющее воздействие "> на нижележащий уровень, подчиненный ему, и это воздействие проявляется в том, что подчиненные компоненты иерархии приобретают ">новые свойства ">, отсутствовавшие у них в изолированном состоянии, а в результате появления этих новых свойств формируется новый, другой «облик целого». Возникшее таким образом новое целое приобретает способность осуществлять новые функции, в чем и состоит цель образования иерархий. Иными словами, речь идет о ">закономерности эмердэюентности, ">или ">целостности ">(см. ">Закономерность целостности) ">и ее проявлении на каждом уровне иерархии.

">Иерархические представления помогают лучше понять и исследовать феномен сложности. Основными особенностями иерархической упорядоченности с позиции полезности их использования в качестве моделей системного анализа являются следующие:

">1. В силу закономерности ">коммуникативности, ">которая проявляется не только между выделенной системой и ее окружением, но и между уровнями иерархии исследуемой системы, каждый уровень иерархической упорядоченности имеет сложные взаимоотношения с вышестоящим и нижележащим уровнями.

">По метафорической формулировке, используемой Кёстлером, каждый уровень иерархии обладает свойством «двуликого Януса»: «лик», направленный в сторону нижележащего уровня, имеет характер автономного целого (системы), а «лик», направленный к узлу (вершине) вышестоящего уровня, проявляет свойства зависимой части (элемента вышестоящей системы, каковой является для него составляющая вышестоящего уровня, которой он подчинен).

">2. Важнейшая особенность иерархической упорядоченности как закономерности заключается в том, что закономерность целостности, т.е. качественные изменения свойств компонентов более высокого уровня по сравнению с объединяемыми компонентами нижележащего, проявляется в ней на каждом уровне иерархии.

">3. При использовании иерархических представлений как средства исследования систем с неопределенностью происходит как бы разбиение «большой» неопределенности на более «мелкие», лучше поддающиеся исследованию.

">4. В силу закономерности целостности одна и та же система может быть представлена разными иерархическими структурами. Это зависит от цели и лиц, формирующих структуру.

">В связи с изложенным на этапе структуризации системы (или ее цели) необходимо ставить задачу выбора варианта структуры для дальнейшего исследования или проектирования системы, для организации управления технологическим процессом, предприятием, проектом и т.д. Для того чтобы помочь в решении подобных задач, разрабатывают методики структуризации, методы оценки и сравнительного анализа структур. Вид иерархической структуры зависит также от применяемой методики.

">Благодаря рассмотренным особенностям иерархические представления могут использоваться в качестве средства для исследования систем и проблемных ситуаций с большой начальной неопределенностью.

">Закономерность аддитивности ">- закономерность теории систем, двойственная по отношению к ">закономерности целостности "> Свойство ">аддитивности "> (независимости, суммативности, обособленности) проявляется у элементов, как бы распавшихся на независимые элементы и выражается следующей формулой:

">Любая развивающаяся система находится, как правило, между состоянием абсолютной ">целостности ">и абсолютной ">аддитивности, ">и вьщеляемое состояние системы (ее «срез») можно охарактеризовать степенью проявления одного из этих свойств или тенденций к его нарастанию или уменьшению.

">

">3. Закономерности осуществимости систем

">Данную группу раскрывают следующие три закономерности:

  1. ">Эквифинальность потенциальной эффективности
  2. ">Закон «необходимого разнообразия У. Эшби»
  3. ">Потенциальная осуществимость Б. С. Флешмана

">Закономерность эквифинальности ">- одна из ">закономерностей функционирования и развития систем ">, характеризующая предельные возможности системы.

">Этот термин предложил Л. фон Берталанфи, который для открытой системы определил эквифинальность как «способность, в отличие от состояния равновесия в закрытых системах, полностью детерминированных начальными условиями, достигать не зависящего от времени состояния, которое не зависит от ее начальных условий и определяется исключительно параметрами системы»

">Потребность во введении понятия эквифинальности возникает, начиная с некоторого уровня сложности систем. Эта закономерность заставляет задуматься о предельных возможностях создаваемых предприятий, организационных систем управления отраслями, регионами, государством. Особый интерес представляют исследования возможных уровней существования социально-общественных систем, что важно учитывать при определении целей системы.

">На необходимость учитывать предельную осуществимость системы при ее создании впервые обратил внимание У.Р. Эшби и обосновал ">Закон «необходимого разнообразия».

">Основным следствием данной закономерности является следующий вывод: чтобы создать систему, способную справиться с решением проблемы, обладающей определенным, известным разнообразием, нужно, чтобы сама система имела еще большее разнообразие, чем разнообразие решаемой проблемы, или была способна создать в себе это разнообразие.

">Применительно к системам управления закон «необходимого разнообразия» может быть сформулирован следующим образом: разнообразие управляющей системы (системы управления) должно быть больше (или по крайней мере равно) разнообразию управляемого объекта ">.

">На основе «необходимого разнообразия У. Эшби», В.И. Терещенко предложил следующие пути совершенствования управления при усложнении производственных процессов:

  1. ">Увеличение разнообразия системы управления путем роста численности аппарата управления, повышения его квалификации, механизации, автоматизации управленческих работ.
  2. ">Уменьшение разнообразия системы управляемого объекта за счет установления правил поведения системы: унификация, стандартизация, типизация, введение поточного производства.
  3. ">Снижение уровня требований к управлению.
  4. ">Самоорганизация объектов управления.

">К середине 70-х гг. XX в. первые три пути были исчерпаны, и основное развитие получил четвертый путь на основе более широкой его трактовки - внедрение хозрасчета, самофинансирования,самоокупаемости и т.п.

">Закономерностью теории систем, объясняющей возможность осуществимости систем является ">закономерность потенциальной эффективности.

">Б.С. Флейшман связал сложность структуры системы со сложностью ее поведения, предложил количественные выражения предельных законов надежности, помехоустойчивости, управляемости и других качеств систем и показал, что на их основе можно получить количественные оценки осуществимости систем с позиции того или иного качества – предельные оценки жизнеспособности и потенциальной эффективности сложных систем.

">Эти оценки исследовались применительно к техническим и экологическим системам и пока еще мало применялись для социально-экономических систем. Но потребность в таких оценках на практике ощущается все более остро.

">Например, нужно определять: когда исчерпываются потенциальные возможности существующей организационной структуры предприятия и возникает необходимость в ее преобразовании, когда устаревают и требуют обновления производственные комплексы, оборудование и т.п.

">

">4. Закономерности развития систем

">Данная группа включает в себя закономерности самоорганизации и историчности.

">Закономерность историчности ">систем выражается в том, что любая система не может быть неизменной, что она не только возникает, функционирует, развивается, но и погибает, и каждый может привести примеры становления, расцвета, упадка (старения) и даже смерти (гибели) биологических и социальных систем.

">Однако для конкретных случаев развития организационных систем и сложных технических комплексов достаточно трудно определить эти периоды. Не всегда руководители организаций и конструкторы технических систем учитывают, что время является непременной характеристикой системы, что каждая система подчиняется ">закономерности историчности ">и что эта закономерность такая же объективная, как целостность, иерархическая упорядоченность и др. Поэтому в практике проектирования и управления на необходимость учета закономерности историчности начинают обращать все больше внимания. В частности, при разработке технических комплексов предлагают учитывать их «жизненные циклы», рекомендуют в процессе проектирования рассматривать не только этапы создания и обеспечения развития системы, но и вопрос о том, когда и как ее нужно уничтожить (возможно, предусмотрев «механизм» ее ликвидации или самоликвидации).

">Так, рекомендуют при создании технической документации, сопровождающей систему, включать в нее не только вопросы эксплуатации системы, но и ее срок жизни, ликвидацию. При регистрации предприятий также требуется, чтобы в уставе предприятия был предусмотрен этап его ликвидации.

">Однако закономерность историчности можно учитывать, не только пассивно фиксируя старение, но и использовать для предупреждения «смерти» системы, разрабатывая «механизмы» реконструкции, реорганизации системы для разработки или сохранения ее в новом качестве.

">Характерной особенностью развивающихся систем является их ">способность к самоорганизации ">, которая проявляется в самосогласованном функционировании системы за счет внутренних связей с внешней средой. Рассматривая развитие как процесс самоорганизации системы, выделим в нем две основные фазы: адаптацию, или эволюционное развитие и отбор. Самоорганизующиеся системы обладают механизмом непрерывной приспособляемости (адаптации) к меняющимся внутренним и внешним условиям, непрерывного совершенствования поведения с учетом прошлого опыта. При исследовании процессов самоорганизации будем исходить из предположения, что в развивающихся системах структура и функция тесно взаимосвязаны. Система преобразует свою структуру для того, чтобы выполнить заданные функции в условиях меняющейся внешней среды. ">

">

">5. Закономерности целеобразования

">К данной группе относятся ">закономерности формулирования ">целей ">в открытых системах с активными элементами.

">Основными закономерностями целеобразования являются следующие.

">1. Зависимость представления о цели и формулировки цели от стадии познания объекта (процесса) и от времени. ">При формулировании и пересмотре цели коллектив, выполняющий эту работу, должен определить, в каком смысле на данном этапе рассмотрения объекта и развития наших представлений о нем употребляется понятие ">цели ">, к какой точке условной шкалы «идеальные устремления в будущее - реальный конечный результат деятельности» ближе принимаемая формулировка цели.

">По мере углубления исследований, познания объекта цель может сдвигаться в одну или другую сторону на шкале, а соответственно должна изменяться и ее формулировка.

">2. Зависимость цели от внешних и внутренних факторов. ">При анализе причин возникновения и формулирования цели нужно учитывать, что на нее влияют как внешние по отношению к системе факторы, так и внутренние факторы.

">Цели могут возникать на основе взаимодействия противоречий (или, напротив, коалиций) как между внешними и внутренними факторами, так и между внутренними факторами, уже существующими и вновь возникающими в целостности, находящейся в постоянном самодвижении.

">Эта закономерность характеризует очень важное отличие ">открытых систем ">(см.), развивающихся систем с активными элементами от технических систем, отображаемых обычно замкнутыми, или ">закрытыми ">моделями. В открытых, развивающихся системах цели не задаются извне, а формируются внутри системы на основе закономерности целеобразования.

">3. Возможность (и необходимость) сведения задачи формулирования обобщающей (общей, глобальной) цели к задаче ее структуризации.

">4. Закономерности формирования структур целей:

  1. ">зависимость способа представления цели от стадии познания объекта;

">Цели могут представляться в форме различных ">структур: сетевых, иерархических ">, ">древовидных, со «слабыми связями», ">в виде ">«страт» ">и ">«эшелонов», "> в ">матричной ">(табличной) форме и др..

">На начальных этапах моделирования системы, как правило, удобнее применять декомпозицию в пространстве, предпочтительнее - древовидные иерархические структуры.

  1. ">проявление в структуре целей закономерности целостности;

">В иерархической структуре закономерность целостности, или эмерджентности проявляется на любом уровне иерархии.

  1. ">закономерности формирования иерархических структур целей
  2. ">закономерности формирования структур целей.

">

">7. Список использованных источников

  1. ">Волкова В.Н. Основы теории систем и системного анализа, 2009.
  2. ">В.Н. Волкова, А.А. Денисов. - СПб.: Изд-во СПбГТУ, 2007.
  3. ">Волкова Н.В. Теория систем и системный анализ в управлении организациями: ТЗЗ Справочник: Учеб. пособие / Под ред. В.Н. Волковой и А.А. Емельянова.- М.: Финансы и статистика, 2006.
    17. тема принципов и норм регулирующих отношения властного порядка между государствами и другими субъектами ме.html
    18. климатических демографических социальных экономических в конечном итоге производственных- факторы живог
    19. Лабораторная работа 2 Цель работы- изучение способов представления числовых данных в микроконтроллера
    20. Органы полового размножения мхов антеридии и архегонии развиваются на- а спорофите б мужском и женско

    Материалы собраны группой SamZan и находятся в свободном доступе

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама