THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Область применения принципа Даламбера – это динамика несвободных механических систем. Даламбер предложил оригинальный метод решения задач динамики, позволяющий использовать достаточно простые уравнения статики. Он писал: «Данное правило приводит все задачи, относящиеся к движению тел, к более простым задачам о равновесии».

В основу данного метода положены силы инерции. Введем это понятие.

Силой инерции называют геометрическую сумму сил противодействия движущейся материальной частицы телам, сообщающим ей ускорение.

Поясним это определение. На рис. 15.1 показана материальная частица М , взаимодей-ствующая с n материальными объектами. На рис. 15.1 показаны силы взаимодействия: без

щие на самом деле не на частицу, а на тела с массами m 1 , …, m n . Ясно, что равнодейст-вующая этой системы сходящихся сил противодействия, R ’ =ΣF’ k , по модулю равна R и направлена противоположно ускорению, т.е.: R ’ =-ma. Данная сила и является силой инерции, о которой говорится в определении. В дальнейшем будем ее обозначать буквой Ф , т.е.:

В общем случае криволинейного движения точки ускорение представляет собой сумму двух составляющих:

Из (15.4) видно, что составляющие силы инерции направлены противоположно направлениям соответствующих составляющих ускорения точки. Модули составляющих силы инерции определяют по следующим формулам:

где ρ – радиус кривизны траектории точки.

После определения силы инерции рассмотрим принцип Даламбера .

Пусть дана механическая система, состоящая из n материальных точек (рис. 15.2). Возьмем одну из них. Все силы, действующие на k -ю точку, классифицируем по группам:

Выражение (15.6) отражает сущность принципа Даламбера, записанного для одной мате-риальной точки. Повторяя проделанные выше действия по отношению к каждой точке механической системы, можно записать систему n уравнений, подобных (15.6), что и будет являться математической записью принципа Даламбера применительно к механи-ческой системе. Таким образом, сформулируем принцип Даламбера для механической системы:

Если к каждой точке механической системы в любой момент времени, кроме фактически действующих на нее внешних и внутренних сил, приложить соответствующую силу инерции, то вся система сил будет приведена в равновесное состояние и к ней можно будет применять все уравнения статики.

Следует иметь в виду:

Принцип Даламбера можно применять для динамических процессов, протекающих в

инерциальных системах отсчета. Этого же требования, как отмечалось ранее, следует придерживаться и при применении законов динамики;

Силы инерции, которые, согласно методики принципа Даламбера, необходимо прило-

жить к точкам системы, на самом деле на них не действуют. Действительно, если бы они существовали, то вся совокупность сил, приложенных к каждой точке, находилась бы в равновесии, и отсутствовала бы сама постановка задачи динамики.

Для равновесной системы сил можно записать следующие уравнения:

т.е. геометрическая сумма всех сил системы, включая и силы инерции, и геометрическая сумма моментов всех сил относительно произвольного центра равны нулю.

Учитывая свойства внутренних сил системы:

выражения (15.7) можно заметно упростить.

Вводя обозначения главного вектора

и главного момента

выражения (15.7) предстанут в виде:

Уравнения (15.11) являются прямым продолжением принципа Даламбера, но не содержат внутренних сил, что является их несомненным преимуществом. Их использование наиболее эффективно при исследовании динамики механических систем, состоящих из твердых тел.

Если рассматривать систему, которая состоит из нескольких материальных точек, выделяя одну определенную точку с известной массой, то под действием приложенных к ней внешних и внутренних сил она получает некоторое ускорение по отношению к инерциальной системе отсчета. Среди таких сил могут быть как активные силы, так и реакции связи.

Сила инерции точки - это векторная величина, которая равна по модулю произведению массы точки на ее ускорение. Данную величину иногда упоминают как даламберовскую силу инерции, она направлена противоположно ускорению. В этом случае обнаруживается следующее свойство движущейся точки: если в каждый момент времени прибавить силу инерции к фактически действующим на точку силам, то полученная система сил будет уравновешена. Так можно сформулировать принцип Даламбера для одной материальной точки. Данное утверждение полностью соответствует второму закону Ньютона.

Принципы Даламбера для системы

Если повторить все рассуждения для каждой точки в системе, они приводят к следующему выводу, который выражает принцип Даламбера, сформулированный для системы: если в любой момент времени приложить к каждой из точек в системе, помимо фактически действующих внешних и внутренних сил, то данная система будет находиться в равновесии, поэтому к ней можно применять все уравнения, которые используются в статике.

Если применять принцип Даламбера для решения задач динамики, то уравнения движения системы можно составить в форме известных нам уравнений равновесия. Данный принцип значительно упрощает расчеты и делает подход к решению задач единым.

Применение принципа Даламбера

Следует учитывать, что на движущуюся точку в механической системе действуют только внешние и внутренние силы, которые возникают как результат взаимодействия точек между собой, а также с телами, не входящими в данную систему. Точки движутся с определенными ускорениями под действием всех этих сил. Силы инерции не действуют на движущиеся точки, в противном случае они бы двигались без ускорения или были в покое.

Силы инерции вводятся лишь для того, чтобы составить уравнения динамики при помощи более простых и удобных методов статики. Учитывается также, что геометрическая сумма внутренних сил и сумма их моментов равна нулю. Использование уравнений, которые вытекают из принципа Даламбера, делает процесс решения задач проще, так как данные уравнения уже не содержат внутренних сил.

Методы решения задач механики, которые до сих пор рассматривались, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствием этих законов. Однако этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Найдем сначала выражение принципа для одной материальной точки. Пусть на материальную точку с массой действует система активных сил, равнодействующую которых обозначим и реакция связи N (если точка является несвободной). Под действием всех этих сил точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением а.

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки.

Тогда оказывается, что движение точки обладает следующим свойством: если в любой момент времени к действующим на точку активным силам и реакции связи присоединить силу инерции, то полученная система сил будет уравновешенной, т. е.

Это положение выражает принцип Даламбера для материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает Перенося здесь величину та в правую часть равенства и учитывая обозначение (84), придем к соотношению (85). Наоборот, перенося в уравнении (85) величину в другую часть равенства и учитывая обозначение (84), получим выражение второго закона Ньютона.

Рассмотрим теперь механическую систему, состоящую из материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил (в которые входят и активные силы, и реакции связей) точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением Введя для этой точки силу инерции получим согласно равенству (85), что

т. е. что образуют уравновешенную систему сил. Повторяя такие рассуждения для каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы кроме действующих на нее внешних и внутренних сил присоединить соответствующие силы инерции, то полученная система сил будет уравновешенной и к ней можно применять все уравнения статики.

Математически принцип Даламбера для системы выражается векторными равенствами вида (85), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в § 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. § 141).

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причем, как показано в § 120, это справедливо для сил, действующих не только на твердое тело но и на любую изменяемую механическую систему.

Тогда на основании принципа Даламбера должно быть:

Введем обозначения:

Величины представляют собою главный вектор и главный момент относительно центра О системы сил инерции. В результате, учитывая, что геометрическая сумма внутренних сил и сумма их моментов равны нулю, получим из равенств (86):

Применение уравнений (88), вытекающих из принципа Даламбера, упрощает процесс решения задач, так как эти уравнения не содержат внутренних сил. По существу уравнения (88) эквивалентны уравнениям, выражающим теоремы об изменении количества движения и главного момента количеств движения системы, и отличаются от них только по форме.

Уравнениями (88) особенно удобно пользоваться при изучении движения твердого тела или системы твердых тел. Для полного изучения движения любой изменяемой системы этих уравнений будет недостаточно, так же как недостаточно уравнений статики для изучения равновесия любой механической системы (см. § 120).

В проекциях на координатные оси равенства (88) дают уравнения, аналогичные соответствующим уравнениям статики (см. § 16, 30). Чтобы пользоваться этими уравнениями при решении задач, надо знать выражения главного вектора и главного момента сил инерций.

В заключение следует подчеркнуть, что при изучении движения по отношению к инерциальной системе отсчета, которое здесь и рассматривается, силы инерции вводятся только тогда, когда для решения задач применяется принцип Даламбера

Первоначально идея этого принципа была высказана Яковом Бернулли (1654-1705) при рассмотрении задачи о центре колебаний тел произвольной формы. В 1716 г. петербургский академик Я. Герман (1678 - 1733) выдвинул принцип статической эквивалентности «свободных» движений и «фактических» движений, т. е. движений, осуществляемых при наличии связей. Позже этот принцип был применен Л. Эйлером (1707- 1783) к задаче о колебаниях гибких тел (работа была опубликована в 1740 г.) и получил название «петер-бурского принципа». Однако первым, кто сформулировал рассматриваемый принцип в общем виде, хотя и не дал ему надлежащего аналитического выражения, был Даламбер (1717-1783). В своей «Динамике» вышедшей в 1743 г., он указал общий метод подхода к решению задач динамики несвободных систем. Аналитическое выражение этого принципа было дано позднее Лагранжем в его «Аналитической механике».

Рассмотрим некоторую несвободную механическую систему. Обозначим равнодействующую всех активных сил, действующих на какую-либо точку системы, через а равнодействующую реакций связей - через Тогда уравнение движения точки будет иметь вид

где - вектор ускорения точки, а масса этой точки.

Если ввести в рассмотрение силу называемую даламберовой силой инерциито уравнение движения (2.9) можно переписать в форме уравнения равновесия трех сил:

Уравнение (2.10) составляет существо принципа Даламбера для точки, а это же уравнение, распространенное на систему, - существо принципа Даламбера для системы.

Уравнение движения, написанное в форме (2.10), позволяет дать принципу Даламбера следующую формулировку: если систему находящуюся в движении, в какой-либо момент времени мгновенно остановить и к каждой материальной точке этой системы приложить действовавшие на нее в момент остановки активные силы реакции связей и даламберовы силы инерции то система останется в равновесии.

Принцип Даламбера представляет собой удобный методический прием решения динамических задач, так как позволяет уравнения движения несвободных систем написать в форме уравнений статики.

Этим самым, конечно, задача динамики не сводится к задаче статики, так как задача интегрирования уравнений движения по-прежнему сохраняется, но принцип Даламбера дает единый метод составления уравнений движения несвободных систем, и в этом его главное преимущество.

Если иметь в виду, что реакции представляют собой действие связей на точки системы, то принципу Даламбера можно дать и такую формулировку: если к активным силам действующим на точки несвободной системы, присоединить даламберовы силы инерции то результирующие этих сил уравновесятся реакциями связей. Следует подчеркнуть условность этой формулировки, так как в действительности

при движении системы никакого уравновешивания нет, поскольку силы инерции к точкам системы не приложены.

Наконец, принципу Даламбера можно дать еще одну эквивалентную формулировку, для чего уравнение (2.9) перепишем в такой форме:

Принцип Даламбера применяется при решении первой основной задачи динамики несвободной точки, когда известны движение точки и действующие на неё активные силы, а отыскивается возникающая реакция связи.

Запишем основное уравнение динамики несвободной точки в инерциальной системе отсчёта:

Перепишем уравнение в виде:

.

Обозначив , получим

, (11.27)

где вектор называется Даламберовой силой инерции .

Формулировка принципа: В каждый момент движения несвободной материальной точки активная сила и реакция связи уравновешиваются Даламберовой силой инерции .

Проектируя векторное уравнение (11.27) на какие-либо координатные оси, мы получим соответствующие уравнения равновесия, пользуясь которыми можно находить неизвестные реакции.

Спроектируем уравнение (11.27) на естественные оси:

(11.28)

где называется центробежной силой инерции, всегда направленной в отрицательную сторону главной нормали; .

Замечания:

1). В действительности к точке помимо сил и каких-либо других физических сил не приложено и три силы не составляют уравновешенную систему сил. В этом смысле Даламберова сила инерции является фиктивной силой, условно прикладываемой к точке.

2). Принцип Даламбера следует рассматривать как удобный методический прием, позволяющий задачу динамики свести к задаче статики.

Пример 1. Определим реакцию связи, действующую на лётчика при выходе самолёта, движущегося в вертикальной плоскости, из пикирующего полёта (рис.11.5).

На лётчика действует сила тяжести и реакция сидения . Применим принцип Даламбера, присоединив к этим силам Даламберову силу инерции:

(11.29)

Запишем уравнение (11.29) в проекциях на нормаль :

(11.30)

где r - радиус окружности при выходе самолёта на горизонтальный полёт,

Максимальная скорость самолёта в этот момент.

Из уравнения (11.30)

(11.31)

Пример 2. Определим теперь ту же реакцию, действующую на лётчика в момент выхода из режима набора высоты (рис.11.6).

Относительное движение материальной точки

Если системы отсчета движутся относительно инерциальной системы отсчета не поступательно, либо неравномерно или криволинейно движутся начала их координат, то такие системы отсчета являются неинерциальными . В этих системах отсчета аксиомы А 1 и А 2 не соблюдаются, но из этого не следует, что в динамике исследуются лишь движения, происходящие в инерциальных системах отсчета. Рассмотрим движение материальной точки в неинерциальной системе координат, если известны силы, действующие на материальную точку, и задано движение неинерциальной системы отсчета относительно инерциальной системы отсчета. В дальнейшем инерциальная система отсчета будет называться неподвижной, а неинерциальная – подвижной системой отсчета. Пусть - равнодействующая активных сил, действующих на точку, а - равнодействующая реакции связей; - неподвижная система координат; - подвижная система координат.

Рассмотрим движение материальной точки М (рис. 11.7), не связанной жестко с подвижной системой координат, а движущейся по отношению к ней. Это движение точки в кинематике называли относительным, движение точки относительно неподвижной системы координат – абсолютным, движение подвижной системы координат – переносным.


Основной закон динамики для абсолютного движения точки М будет иметь вид

(11.33)

где - абсолютное ускорение точки.

На основании теоремы сложения ускорений кинематики (теоремы Кориолиса) абсолютное ускорение складывается из относительного, переносного и кориолисова ускорений

. (11.34)

Подставляя (11.34) в (11.33), получим

и после переноса и ввода обозначений

(11.35)

где ; вектор называют переносной силой инерции; - кориолисовой силой инерции.

Равенство (11.35) выражает закон относительного движения точки. Следовательно, движение точки в неинерциальной системе отсчета можно рассматривать как движение в инерциальной системе, если к числу действующих на точку активных сил и реакций связей добавить переносную и кориолисову силы инерции.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама