THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Водород был открыт во второй половине 18 столетия английским ученым в области физики и химии Г. Кавендишем. Он сумел выделить вещество в чистом состоянии, занялся его изучением и описал свойства.

Такова история открытия водорода. В ходе экспериментов исследователь определил, что это горючий газ, сгорание которого в воздухе дает воду. Это привело к определению качественного состава воды.

Что такое водород

О водороде, как о простом веществе, впервые заявил французский химик А. Лавуазье в 1784 году, поскольку определил, что в состав его молекулы входят атомы одного вида.

Название химического элемента по-латыни звучит как hydrogenium (читается «гидрогениум»), что означает «воду рождающий». Название отсылает к реакции горения, в результате которой образуется вода.

Характеристика водорода

Обозначение водорода Н. Менделеев присвоил этому химическому элементу первый порядковый номер, разместив его в главной подгруппе первой группы и первом периоде и условно в главной подгруппе седьмой группы.

Атомарный вес (атомная масса) водорода составляет 1,00797. Молекулярная масса H 2 равна 2 а. е. Молярная масса численно равна ей.

Представлен тремя изотопами, имеющими специальное название: самый распространенный протий (H), тяжелый дейтерий (D), радиоактивный тритий (Т).

Это первый элемент, который может быть полностью разделен на изотопы простым способом. Основывается он на высокой разнице масс изотопов. Впервые процесс был осуществлен в 1933 году. Объясняется это тем, что лишь в 1932 году был выявлен изотоп с массой 2.

Физические свойства

В нормальных условиях простое вещество водород в виде двухатомных молекул является газом, без цвета, у которого отсутствует вкус и запах. Мало растворим в воде и других растворителях.

Температура кристаллизации — 259,2 о C, температура кипения — 252,8 о C. Диаметр молекул водорода настолько мал, что они обладают способностью к медленной диффузии через ряд материалов (резина, стекло, металлы). Это свойство находит применение, когда требуется очистить водород от газообразных примесей. При н. у. водород имеет плотность, равную 0,09 кг/м3.

Возможно ли превращение водорода в металл по аналогии с элементами, расположенными в первой группе? Учеными установлено, что водород в условиях, когда давление приближается к 2 млн. атмосфер, начинает поглощать инфракрасные лучи, что свидетельствует о поляризации молекул вещества. Возможно, при еще более высоких давлениях, водород станет металлом.

Это интересно: есть предположение, что на планетах-гигантах, Юпитере и Сатурне, водород находится в виде металла. Предполагается, что в составе земного ядра тоже присутствует металлический твердый водород, благодаря сверхвысокому давлению, создаваемому земной мантией.

Химические свойства

В химическое взаимодействие с водородом вступают как простые, так и сложные вещества. Но малую активность водорода требуется увеличить созданием соответствующих условий – повышением температуры, применением катализаторов и др.

При нагревании в реакцию с водородом вступают такие простые вещества, как кислород (O 2), хлор(Cl 2), азот (N 2), сера(S).

Если поджечь чистый водород на конце газоотводной трубки в воздухе, он будет гореть ровно, но еле заметно. Если же поместить газоотводную трубку в атмосферу чистого кислорода, то горение продолжится с образованием на стенках сосуда капель воды, как результат реакции:

Горение воды сопровождается выделением большого количества теплоты. Это экзотермическая реакция соединения, в процессе которой водород окисляется кислородом с образованием оксида H 2 O. Это также и окислительно-восстановительная реакция, в которой водород окисляется, а кислород восстанавливается.

Аналогично происходит реакция с Cl 2 с образованием хлороводорода.

Для осуществления взаимодействия азота с водородом требуется высокая температура и повышенное давление, а также присутствие катализатора. Результатом является аммиак.

В результате реакции с серой образуется сероводород, распознавание которого облегчает характерный запах тухлых яиц.

Степень окисления водорода в этих реакциях +1, а в гидридах, описываемых ниже, – 1.

При реакции с некоторыми металлами образуются гидриды, например, гидрид натрия – NaH. Некоторые из этих сложных соединений используются в качестве горючего для ракет, а также в термоядерной энергетике.

Водород реагирует и с веществами из категории сложных. Например, с оксидом меди (II), формула CuO. Для осуществления реакции, водород меди пропускается над нагретым порошкообразным оксидом меди (II). В ходе взаимодействия реагент меняет свой цвет и становится красно-коричневым, а на холодных стенках пробирки оседают капельки воды.

Водород в ходе реакции окисляется, образуя воду, а медь восстанавливается из оксида до простого вещества (Cu).

Области применения

Водород имеет большое значение для человека и находит применение в самых разных сферах:

  1. В химическом производстве – это сырье, в других отраслях – топливо. Не обходятся без водорода и предприятия нефтехимии и нефтепереработки.
  2. В электроэнергетике это простое вещество выполняет функцию охлаждающего агента.
  3. В черной и цветной металлургии водороду отводится роль восстановителя.
  4. Сего помощью создают инертную среду при упаковке продуктов.
  5. Фармацевтическая промышленность — пользуется водородом как реагентом в производстве перекиси водорода.
  6. Этим легким газом наполняют метеорологические зонды.
  7. Известен этот элемент и в качестве восстановителя топлива для ракетных двигателей.

Ученые единодушно пророчат водородному топливу пальму первенства в энергетике.

Получение в промышленности

В промышленности водород получают методом электролиза, которому подвергают хлориды либо гидроксиды щелочных металлов, растворенные в воде. Также можно получать водород этим способом непосредственно из воды.

Используется в этих целях конверсия кокса или метана с водяным паром. Разложение метана при повышенной температуре также дает водород. Сжижение коксового газа фракционным методом тоже применяется для промышленного получения водорода.

Получение в лаборатории

В лаборатории для получения водорода используют аппарат Киппа.

В качестве реагентов выступают соляная или серная кислота и цинк. В результате реакции образуется водород.

Нахождение водорода в природе

Водород чаще других элементов встречается во Вселенной. Основную массу звезд, в том числе Солнца, и иных космических тел составляет водород.

В земной коре его всего 0,15%. Он присутствует во многих минералах, во всех органических веществах, а также в воде, покрывающей на 3/4 поверхность нашей планеты.

В верхних слоях атмосферы можно обнаружить следы водорода в чистом виде. Находят его и в ряде горючих природных газов.

Газообразный водород является самым неплотным, а жидкий – самым плотным веществом на нашей планете. С помощью водорода можно изменить тембр голоса, если вдохнуть его, а на выдохе заговорить.

В основе действия самой мощной водородной бомбы лежит расщепление самого легкого атома.

В периодической системе имеет свое определенное место положения, которое отражает проявляемые им свойства и говорит о его электронном строении. Однако есть среди всех один особый атом, который занимает сразу две ячейки. Он располагается в двух совершенно противоположных по проявляемым свойствам группах элементов. Это водород. Такие особенности делают его уникальным.

Водород - это не просто элемент, но и простое вещество, а также составная часть многих сложных соединений, биогенный и органогенный элемент. Поэтому рассмотрим его характеристики и свойства подробнее.

Водород как химический элемент

Водород - это элемент первой группы главной подгруппы, а также седьмой группы главной подгруппы в первом малом периоде. Данный период состоит всего из двух атомов: гелия и рассматриваемого нами элемента. Опишем основные особенности положения водорода в периодической системе.

  1. Порядковый номер водорода - 1, количество электронов такое же, соответственно, протонов столько же. Атомная масса - 1,00795. Существует три изотопа данного элемента с массовыми числами 1, 2, 3. Однако свойства каждого из них очень сильно различаются, так как увеличение массы даже на единицу именно для водорода является сразу двойным.
  2. То, что на внешнем он содержит всего один электрон, позволяет успешно проявлять ему как окислительные, так и восстановительные свойства. Кроме того, после отдачи электрона у него остается свободная орбиталь, которая принимает участие в образовании химических связей по донорно-акцепторному механизму.
  3. Водород - это сильный восстановитель. Поэтому основным местом его считается первая группа главной подгруппы, где он возглавляет самые активные металлы - щелочные.
  4. Однако при взаимодействии с сильными восстановителями, такими как, например, металлы, он может быть и окислителем, принимая электрон. Данные соединения получили название гидридов. По этому признаку он возглавляет подгруппу галогенов, с которыми является схожим.
  5. Благодаря совсем маленькой атомной массе, водород считается самым легким элементом. Кроме того, его плотность также очень мала, поэтому он также является эталоном легкости.

Таким образом, очевидно, что атом водорода - это совершенно уникальный, непохожий на все остальные элемент. Следовательно, свойства его тоже особенные, а образуемые простые и сложные вещества очень важны. Рассмотрим их далее.

Простое вещество

Если говорить о данном элементе как о молекуле, то нужно сказать, что она двухатомна. То есть водород (простое вещество) - это газ. Формула его эмпирическая будет записываться как Н 2 , а графическая - через одинарную сигма-связь Н-Н. Механизм образования связи между атомами - ковалентный неполярный.

  1. Паровая конверсия метана.
  2. Газификация угля - процесс подразумевает нагревание угля до 1000 0 С, в результате чего образуется водород и высокоуглеродный уголь.
  3. Электролиз. Данный метод может использоваться только для водных растворов различных солей, так как расплавы не приводят к разряжению воды на катоде.

Лабораторные способы получения водорода:

  1. Гидролиз гидридов металлов.
  2. Действие разбавленных кислот на активные металлы и средней активности.
  3. Взаимодействие щелочных и щелочноземельных металлов с водой.

Чтобы собрать образующийся водород, необходимо держать пробирку перевернутой вверх дном. Ведь данный газ нельзя собрать так, как, например, углекислый газ. Это водород, он намного легче воздуха. Быстро улетучивается, а в больших количествах при смешении с воздухом взрывается. Поэтому и следует переворачивать пробирку. После ее заполнения ее нужно закрыть резиновой пробкой.

Чтобы проверить чистоту собранного водорода, следует поднести к горлышку зажженную спичку. Если хлопок глухой и тихий - значит газ чистый, с минимальными примесями воздуха. Если же громкий и свистящий - грязный, с большой долей посторонних компонентов.

Области использования

При сгорании водорода выделяется настолько большое количество энергии (теплоты), что данный газ считается самым выгодным топливом. К тому же экологически чистым. Однако на сегодняшний день его применение в данной области ограничено. Это связано с непродуманными до конца и не решенными проблемами синтеза чистого водорода, который был бы пригоден для использования в качестве топлива в реакторах, двигателях и портативных устройствах, а также отопительных котлах жилых домов.

Ведь способы получения данного газа достаточно дорогостоящие, поэтому прежде необходимо разработать особый метод синтеза. Такой, который позволит получать продукт в большом объеме и с минимальными затратами.

Можно выделить несколько основных областей, в которых находит применение рассматриваемый нами газ.

  1. Химические синтезы. На основании гидрирования получают мыла, маргарины, пластмассы. При участии водорода синтезируется метанол и аммиак, а также другие соединения.
  2. В пищевой промышленности - как добавка Е949.
  3. Авиационная промышленность (ракетостроение, самолетостроение).
  4. Электроэнергетика.
  5. Метеорология.
  6. Топливо экологически чистого вида.

Очевидно, что водород так же важен, как и распространен в природе. Еще большую роль играют образуемые им различные соединения.

Соединения водорода

Это сложные, содержащие атомы водорода вещества. Можно выделить несколько основных типов подобных веществ.

  1. Галогеноводороды. Общая формула - HHal. Особое значение среди них имеет хлорид водорода. Это газ, который растворяется в воде с образованием раствора соляной кислоты. Данная кислота находит широкое применение практически во всех химических синтезах. Причем как органических, так и неорганических. Хлорид водорода - это соединение, имеющее эмпирическую формулу HCL и являющееся одним из крупнейших по объемам производства в нашей стране ежегодно. Также к галогеноводородам относятся йодоводород, фтороводород и бромоводород. Все они образуют соответствующие кислоты.
  2. Летучие Практически все они достаточно ядовитые газы. Например, сероводород, метан, силан, фосфин и прочие. При этом очень горючие.
  3. Гидриды - соединения с металлами. Относятся к классу солей.
  4. Гидроксиды: основания, кислоты и амфотерные соединения. В их состав обязательно входят атомы водорода, один или несколько. Пример: NaOH, K 2 , H 2 SO 4 и прочие.
  5. Гидроксид водорода. Это соединение больше известно как вода. Другое название оксид водорода. Эмпирическая формула выглядит так - Н 2 О.
  6. Пероксид водорода. Это сильнейший окислитель, формула которого имеет вид Н 2 О 2 .
  7. Многочисленные органические соединения: углеводороды, белки, жиры, липиды, витамины, гормоны, эфирные масла и прочие.

Очевидно, что разнообразие соединений рассматриваемого нами элемента очень велико. Это еще раз подтверждает его высокое значение для природы и человека, а также для всех живых существ.

- это лучший растворитель

Как уже упоминалось выше, простонародное название данного вещества - вода. Состоит из двух атомов водорода и одного кислорода, соединенных между собой ковалентными полярными связями. Молекула воды является диполем, это объясняет многие проявляемые ею свойства. В частности то, что она является универсальным растворителем.

Именно в водной среде происходят практически все химические процессы. Внутренние реакции пластического и энергетического обмена в живых организмах также осуществляются с помощью оксида водорода.

Вода по праву считается самым важным веществом на планете. Известно, что без нее не сможет жить ни один живой организм. На Земле она способна существовать в трех агрегатных состояниях:

  • жидкость;
  • газ (пар);
  • твердое (лед).

В зависимости от изотопа водорода, входящего в состав молекулы, различают три вида воды.

  1. Легкая или протиевая. Изотоп с массовым числом 1. Формула - Н 2 О. Это привычная форма, которую используют все организмы.
  2. Дейтериевая или тяжелая, ее формула - D 2 O. Содержит изотоп 2 Н.
  3. Сверхтяжелая или тритиевая. Формула выглядит как Т 3 О, изотоп - 3 Н.

Очень важны запасы пресной протиевой воды на планете. Уже сейчас во многих странах ощущается ее недостаток. Разрабатываются способы обработки соленой воды с целью получения питьевой.

Пероксид водорода - это универсальное средство

Данное соединение, как уже упоминалось выше, прекрасный окислитель. Однако с сильными представителями может вести себя и как восстановитель тоже. Кроме того, обладает выраженным бактерицидным эффектом.

Другое название данного соединения - перекись. Именно в таком виде его используют в медицине. 3% раствор кристаллогидрата рассматриваемого соединения - это медицинское лекарство, которое применяют для обработки небольших ран с целью их обеззараживания. Однако доказано, что при этом заживление ранения по времени увеличивается.

Также пероксид водорода используется в ракетном топливе, в промышленности для дезинфекции и отбеливания, в качестве пенообразователя для получения соответствующих материалов (пенопласта, например). Кроме того, перекись помогает очищать аквариумы, обесцвечивать волосы и отбеливать зубы. Однако при этом наносит вред тканям, поэтому специалистами в этих целях не рекомендуется.

Гидроген Н - химический элемент, один из самых распространённых в нашей Вселенной. Масса водорода как элемента в составе веществ составляет 75 % от общего содержания атомов другого типа. Он входит в наиважнейшее и жизненно необходимое соединение на планете - воду. Отличительной особенностью водорода также является то, что он первый элемент в периодический системе химических элементов Д. И. Менделеева.

Открытие и исследование

Первые упоминания о водороде в трудах Парацельса датируются шестнадцатым веком. Но его выделение из газовой смеси воздуха и исследование горючих свойств были произведены уже в семнадцатом веке учёным Лемери. Досконально изучил гидроген английский химик, физик и естествоиспытатель который опытным путём доказал, что масса водорода наименьшая в сравнении с другими газами. В последующих этапах развития науки многие учёные работали с ним, в частности Лавуазье, назвавший его «рождающим воду».

Характеристика по положению в ПСХЭ

Элемент, открывающий периодическую таблицу Д. И. Менделеева, - это водород. Физические и химические свойства атома проявляют некую двойственность, так как гидроген одновременно относят к первой группе, главной подгруппе, если он ведёт себя как металл и отдаёт единственный электрон в процессе химической реакции, и к седьмой - в случае полного заполнения валентной оболочки, то есть приёме отрицательной частицы, что характеризует его как подобный галогенам.

Особенности электронного строения элемента

Свойства сложных веществ, в состав которых он входит, и самого простого вещества Н 2 в первую очередь определяются электронной конфигурацией гидрогена. Частица имеет один электрон с Z= (-1), который вращается по своей орбите вокруг ядра, содержащего один протон с единичной массой и положительным зарядом (+1). Его электронная конфигурация записывается как 1s 1 , что означает наличие одной отрицательной частицы на самой первой и единственной для гидрогена s-орбитали.

При отрыве или отдаче электрона, а атом этого элемента имеет такое свойство, что роднит его с металлами, получается катион. По сути ион водорода - это положительная элементарная частица. Поэтому лишенный электрона гидроген называют попросту протоном.

Физические свойства

Если описывать водорода кратко, то это бесцветный, малорастворимый газ с относительной атомной массой равной 2, в 14,5 раза легче, чем воздух, с температурой сжижения, составляющей -252,8 градуса Цельсия.

На опыте можно легко убедиться в том, что Н 2 самый легкий. Для этого достаточно наполнить три шара различными веществами - водородом, углекислым газом, обычным воздухом - и одновременно выпустить их из руки. Быстрее всех достигнет земли тот, который наполнен СО 2 , после него опустится надутый воздушной смесью, а содержащий Н 2 вовсе поднимется к потолку.

Маленькая масса и размер частиц водорода обосновывают его способность проникать через различные вещества. На примере того же шара в этом легко убедиться, через пару дней он сам сдуется, так как газ просто пройдёт через резину. Также водород может накапливаться в структуре некоторых металлов (палладий или платина), а при повышении температуры испаряться из неё.

Свойство малорастворимости водорода используют в лабораторной практике для его выделения способом вытеснения водорода (таблица, изображенная ниже, содержит основные параметры) определяют сферы его применения и методы получения.

Параметр атома или молекулы простого вещества Значение
Атомная масса (молярная масса) 1,008 г/моль
Электронная конфигурация 1s 1
Кристаллическая решётка Гексагональная
Теплопроводность (300 K) 0,1815 Вт/(м·К)
Плотность при н. у. 0,08987 г/л
Температура кипения -252,76 °C
Удельная теплота сгорания 120,9·10 6 Дж/кг
Температура плавления -259,2 °C
Растворимость в воде 18,8 мл/л

Изотопный состав

Как и многие другие представители периодической системы химических элементов, гидроген имеет несколько природных изотопов, то есть атомов с одинаковым числом протонов в ядре, но различным числом нейтронов - частиц с нулевым зарядом и единичной массой. Примеры атомов, обладающих подобным свойством - кислород, углерод, хлор, бром и прочие, в том числе радиоактивные.

Физические свойства водорода 1 Н, самого распространённого из представителей данной группы, значительно отличаются от таких же характеристик его собратьев. В частности, разнятся особенности веществ, в состав которых они входят. Так, существует обычная и дейтерированная вода, содержащая в своём составе вместо атома водорода с одним-единственным протоном дейтерий 2 Н - его изотоп с двумя элементарными частицами: положительной и незаряженной. Этот изотоп в два раза тяжелее обычного гидрогена, что и объясняет кардинальное различие в свойствах соединений, которые они составляют. В природе дейтерий встречается в 3200 раз реже, чем водород. Третий представитель - тритий 3 Н, в ядре он имеет два нейтрона и один протон.

Способы получения и выделения

Лабораторные и промышленные методы весьма отличаются. Так, в малых количествах газ получают в основном с помощью реакций, в которых участвуют минеральные вещества, а крупномасштабные производства в большей степени используют органический синтез.

В лаборатории применяют следующие химические взаимодействия:


В промышленных интересах газ получают такими методами, как:

  1. Термическое разложение метана в присутствии катализатора до составляющих его простых веществ (350 градусов достигает значение такого показателя, как температура) - водорода Н 2 и углерода С.
  2. Пропускание парообразной воды через кокс при 1000 градусов Цельсия с образованием углекислого газа СО 2 и Н 2 (самый распространённый метод).
  3. Конверсия газообразного метана на никелевом катализаторе при температуре, достигающей 800 градусов.
  4. Водород является побочным продуктом при электролизе водных растворов хлоридов калия или натрия.

Химические взаимодействия: общие положения

Физические свойства водорода во многом объясняют его поведение в процессах реагирования с тем или иным соединением. Валентность гидрогена равняется 1, так как он в таблице Менделеева расположен в первой группе, а степень окисления проявляет различную. Во всех соединениях, кроме гидридов, водород в с.о.= (1+), в молекулах типа ХН, ХН 2 , ХН 3 - (1-).

Молекула газа водорода, образованная посредством создания обобщенной электронной пары, состоит из двух атомов и довольно устойчива энергетически, именно поэтому при нормальных условиях несколько инертна и в реакции вступает при изменении нормальных условий. В зависимости от степени окисления водорода в составе прочих веществ, он может выступать как в качестве окислителя, так и восстановителя.

Вещества, с которыми реагирует и которые образует водород

Элементные взаимодействия с образованием сложных веществ (часто при повышенных температурах):

  1. Щелочной и щелочноземельный металл + водород = гидрид.
  2. Галоген + Н 2 = галогеноводород.
  3. Сера + водород = сероводород.
  4. Кислород + Н 2 = вода.
  5. Углерод + водород = метан.
  6. Азот + Н 2 = аммиак.

Взаимодействие со сложными веществами:

  1. Получение синтез-газа из монооксида углерода и водорода.
  2. Восстановление металлов из их оксидов с помощью Н 2 .
  3. Насыщение водородом непредельных алифатических углеводородов.

Водородная связь

Физические свойства водорода таковы, что позволяют ему, находясь в соединении с электроотрицательным элементом, образовывать особый тип связи с таким же атомом из соседних молекул, имеющих неподелённые электронные пары (например, кислородом, азотом и фтором). Ярчайший пример, на котором лучше рассмотреть подобное явление, - это вода. Она, можно сказать, прошита водородными связями, которые слабее ковалентных или ионных, но за счёт того, что их много, оказывают значительное влияние на свойства вещества. По сути, водородная связь - это электростатическое взаимодействие, которое связывает молекулы воды в димеры и полимеры, обосновывая её высокую температуру кипения.

Гидроген в составе минеральных соединений

В состав всех входит протон - катион такого атома, как водород. Вещество, кислотный остаток которого имеет степень окисления больше (-1), называется многоосновным соединением. В нём присутствует несколько атомов водорода, что делает диссоциацию в водных растворах многоступенчатой. Каждый последующий протон отрывается от остатка кислоты всё труднее. По количественному содержанию водородов в среде определяется его кислотность.

Применение в деятельности человека

Баллоны с веществом, так же как и емкости с другими сжиженными газами, например кислородом, имеют специфический внешний вид. Они выкрашены в темновато-зелёный цвет с ярко-красной надписью «Водород». Газ закачивают в баллон под давлением порядка 150 атмосфер. Физические свойства водорода, в частности легкость газообразного агрегатного состояния, используют для наполнения им в смеси с гелием аэростатов, шаров-зондов и т.д.

Водород, физические и химические свойства которого люди научились использовать много лет назад, на сегодняшний момент задействован во многих отраслях промышленности. Основная его масса идёт на производство аммиака. Также водород участвует в (гафния, германия, галлия, кремния, молибдена, вольфрама, циркония и прочих) из окислов, выступая в реакции в качестве восстановителя, синильной и соляной кислот, а также искусственного жидкого топлива. Пищевая промышленность использует его для превращения растительных масел в твёрдые жиры.

Определили химические свойства и применение водорода в различных процессах гидрогенизации и гидрирования жиров, углей, углеводородов, масел и мазута. С помощью него производят драгоценные камни, лампы накаливания, проводят ковку и сварку металлических изделий под воздействием кислородно-водородного пламени.

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

  • Обозначение - H (Hydrogen);
  • Латинское название - Hydrogenium;
  • Период - I;
  • Группа - 1 (Ia);
  • Атомная масса - 1,00794;
  • Атомный номер - 1;
  • Радиус атома = 53 пм;
  • Ковалентный радиус = 32 пм;
  • Распределение электронов - 1s 1 ;
  • t плавления = -259,14°C;
  • t кипения = -252,87°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,02/-;
  • Степень окисления: +1; 0; -1;
  • Плотность (н. у.) = 0,0000899 г/см 3 ;
  • Молярный объем = 14,1 см 3 /моль.

Бинарные соединения водорода с кислородом:

Водород ("рождающий воду") был открыт английским ученым Г. Кавендишем в 1766 году. Это самый простой элемент в природе - атом водорода имеет ядро и один электрон, наверное, по этой причине водород является самым распространенным элементом во Вселенной (составляет более половины массы большинства звезд).

Про водород можно сказать, что "мал золотник, да дорог". Несмотря на свою "простоту", водород дает энергию всем живым существам на Земле - на Солнце идет непрерывная термоядерная реакция в ходе которой из четырех атомов водорода образуется один атом гелия, данный процесс сопровождается выделением колоссального количества энергии (подробнее см. Ядерный синтез).

В земной коре массовая доля водорода составляет всего 0,15%. Между тем, подавляющее число (95%) всех известных на Земле химических веществ содержат один или несколько атомов водорода.

В соединениях с неметаллами (HCl, H 2 O, CH 4 ...) водород отдает свой единственный электрон более электроотрицательным элементам, проявляя степень окисления +1 (чаще), образуя только ковалентные связи (см. Ковалентная связь).

В соединениях с металлами (NaH, CaH 2 ...) водород, наоборот, принимает на свою единственную s-орбиталь еще один электрон, пытаясь, таким образом, завершить свой электронный слой, проявляя степень окисления -1 (реже), образуя чаще ионную связь (см. Ионная связь), т. к., разность в электроотрицательности атома водорода и атома металла может быть достаточно большой.

H 2

В газообразном состоянии водород находится в виде двухатомных молекул, образуя неполярную ковалентную связь.

Молекулы водорода обладают:

  • большой подвижностью;
  • большой прочностью;
  • малой поляризуемостью;
  • малыми размерами и массой.

Свойства газа водорода:

  • самый легкий в природе газ, без цвета и запаха;
  • плохо растворяется в воде и органических растворителях;
  • в незначительных кол-вах растворяется в жидких и твердых металлах (особенно в платине и палладии);
  • трудно поддается сжижению (по причине своей малой поляризуемости);
  • обладает самой высокой теплопроводностью из всех известных газов;
  • при нагревании реагирует со многими неметаллами, проявляя свойства восстановителя;
  • при комнатной температуре реагирует со фтором (происходит взрыв): H 2 + F 2 = 2HF;
  • с металлами реагирует с образованием гидридов, проявляя окислительные свойства: H 2 + Ca = CaH 2 ;

В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Восстановительные свойства водорода широко используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов и галлидов.

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Реакции водорода с простыми веществами

Водород принимает электрон, играя роль восстановителя , в реакциях:

  • с кислородом (при поджигании или в присутствии катализатора), в соотношении 2:1 (водород:кислород) образуется взрывоопасный гремучий газ: 2H 2 0 +O 2 = 2H 2 +1 O+572 кДж
  • с серой (при нагревании до 150°C-300°C): H 2 0 +S ↔ H 2 +1 S
  • с хлором (при поджигании или облучении УФ-лучами): H 2 0 +Cl 2 = 2H +1 Cl
  • с фтором : H 2 0 +F 2 = 2H +1 F
  • с азотом (при нагревании в присутствии катализаторов или при высоком давлении): 3H 2 0 +N 2 ↔ 2NH 3 +1

Водород отдает электрон, играя роль окислителя , в реакциях с щелочными и щелочноземельными металлами с образованием гидридов металлов - солеобразные ионные соединения, содержащие гидрид-ионы H - - это нестойкие кристаллические в-ва белого цвета.

Ca+H 2 = CaH 2 -1 2Na+H 2 0 = 2NaH -1

Для водорода нехарактерно проявлять степень окисления -1. Реагируя с водой, гидриды разлагаются, восстанавливая воду до водорода. Реакция гидрида кальция с водой имеет следующий вид:

CaH 2 -1 +2H 2 +1 0 = 2H 2 0 +Ca(OH) 2

Реакции водорода со сложными веществами

  • при высокой температуре водород восстанавливает многие оксиды металлов: ZnO+H 2 = Zn+H 2 O
  • метиловый спирт получают в результате реакции водорода с оксидом углерода (II): 2H 2 +CO → CH 3 OH
  • в реакциях гидрогенизации водород реагирует с многими органическими веществами.

Более подробно уравнения химических реакций водорода и его соединений рассмотрены на странице "Водород и его соединения - уравнения химических реакций с участием водорода ".

Применение водорода

  • в атомной энергетике используются изотопы водорода - дейтерий и тритий;
  • в химической промышленности водород используют для синтеза многих органических веществ, аммиака, хлороводорода;
  • в пищевой промышленности водород применяют в производстве твердых жиров посредство гидрогенизации растительных масел;
  • для сварки и резки металлов используют высокую температуру горения водорода в кислороде (2600°C);
  • при получении некоторых металлов водород используют в качестве восстановителя (см. выше);
  • поскольку водород является легким газом, его используют в воздухоплавании в качестве наполнителя воздушных шаров, аэростатов, дирижаблей;
  • как топливо водород используют в смеси с СО.

В последнее время ученые уделяют достаточно много внимания поиску альтернативных источников возобновляемой энергии. Одним из перспективных направлений является "водородная" энергетика, в которой в качестве топлива используется водород, продуктом сгорания которого является обыкновенная вода.

Способы получения водорода

Промышленные способы получения водорода:

  • конверсией метана (каталитическим восстановлением водяного пара) парами воды при высокой температуре (800°C) на никелевом катализаторе: CH 4 + 2H 2 O = 4H 2 + CO 2 ;
  • конверсией оксида углерода с водяным паром (t=500°C) на катализаторе Fe 2 O 3: CO + H 2 O = CO 2 + H 2 ;
  • термическим разложением метана: CH 4 = C + 2H 2 ;
  • газификацией твердых топлив (t=1000°C): C + H 2 O = CO + H 2 ;
  • электролизом воды (очень дорогой способ при котором получается очень чистый водород): 2H 2 O → 2H 2 + O 2 .

Лабораторные способы получения водорода:

  • действием на металлы (чаще цинк) соляной или разбавленной серной кислотой: Zn + 2HCl = ZCl 2 + H 2 ; Zn + H 2 SO 4 = ZnSO 4 + H 2 ;
  • взаимодействием паров воды с раскаленными железными стружками: 4H 2 O + 3Fe = Fe 3 O 4 + 4H 2 .

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама