THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

МЕНДЕЛЬ, ГРЕГОР ИОГАНН (Mendel, Gregor Johann) (1822–1884), австрийский биолог, основоположник генетики.

Родился 22 июля 1822 в Хейнцендорфе (Австро-Венгрия, ныне Гинчице, Чехия). Учился в школах Хейнцендорфа и Липника, затем в окружной гимназии в Троппау. В 1843 окончил философские классы при университете в Ольмюце и постригся в монахи Августинского монастыря св. Фомы в Брюнне (Австрия, ныне Брно, Чехия). Служил помощником пастора, преподавал естественную историю и физику в школе. В 1851–1853 был вольнослушателем в Венском университете, где изучал физику, химию, математику, зоологию, ботанику и палеонтологию. По возвращении в Брюнн работал помощником учителя в средней школе до 1868, когда стал настоятелем монастыря. В 1856 Мендель начал свои эксперименты по скрещиванию разных сортов гороха, различающихся по единичным, строго определенным признакам (например, по форме и окраске семян). Точный количественный учет всех типов гибридов и статистическая обработка результатов опытов, которые он проводил в течение 10 лет, позволили ему сформулировать основные закономерности наследственности – расщепление и комбинирование наследственных «факторов». Мендель показал, что эти факторы разделены и при скрещивании не сливаются и не исчезают. Хотя при скрещивании двух организмов с контрастирующими признаками (например, семена желтые или зеленые) в ближайшем поколении гибридов проявляется лишь один из них (Мендель назвал его «доминирующим»), «исчезнувший» («рецессивный») признак вновь возникает в следующих поколениях. (Сегодня наследственные «факторы» Менделя называются генами.)

О результатах своих экспериментов Мендель сообщил Брюннскому обществу естествоиспытателей весной 1865; год спустя его статья была опубликована в трудах этого общества. На заседании не было задано ни одного вопроса, а статья не получила откликов. Мендель послал копию статьи К.Негели, известному ботанику, авторитетному специалисту по проблемам наследственности, но Негели также не сумел оценить ее значения. И только в 1900 забытая работа Менделя привлекла к себе всеобщее внимание: сразу три ученых, Х. де Фриз (Голландия), К.Корренс (Германия) и Э.Чермак (Австрия), проведя почти одновременно собственные опыты, убедились в справедливости выводов Менделя. Закон независимого расщепления признаков, известный теперь как закон Менделя, положил начало новому направлению в биологии – менделизму, ставшему фундаментом генетики.

Сам Мендель, после неудачных попыток получить аналогичные результаты при скрещивании других растений, прекратил опыты и до конца жизни занимался пчеловодством, садоводством и метеорологическими наблюдениями.

Среди трудов ученого – Автобиография (Gregorii Mendel autobiographia iuvenilis , 1850) и ряд статей, включая Эксперименты по гибридизации растений (Versuche über Pflanzenhybriden , в «Трудах Брюннского общества естествоиспытателей», т. 4, 1866).

Цели:

  1. Охарактеризовать генетику как науку, её развитие и значение.
  2. Ввести понятие о гибридологическом методе изучения наследственности, основных генетических терминах и символике.
  3. Развивать через поэтапную работу мыслительную деятельность учащихся и навыки работы с генетической терминологией.
  4. Воспитывать у учащихся интерес к получению генетических знаний.

Оборудование: портрет Г.Менделя, модель-аппликация: "Ход моногибридного скрещивания", сюжетный рисунок, словесные плакаты: задачи урока и раздела, стихотворение С. Михалкова, раздаточный поурочный материал: тест, статья: "Как работал Мендель".

Тип урока: вводная лекция.

ХОД УРОКА

I. Организационный момент (5 –7 мин.)

1. Проверка посещаемости урока.
2. Концентрация внимания учащихся.

II. Основная часть урока (60 мин.)

1. Вступительное слово учителя. Уважаемые ребята и гости урока, мы сегодня открываем страницу наиболее интересной науки биологического цикла – генетики. Генетика является наукой, где требуется понимание и знание многих сложных вопросов. Я прошу быть внимательным в течение всего занятия.

Учитель знакомит учащихся с темами изучаемого раздела и с конкретными задачами данного урока.

Темы изучаемого раздела (на отдельном плакате) :

  1. Генетика – как наука о наследственности и изменчивости.
  2. Г. Мендель – основоположник генетической науки.
  3. Новости генетической науки.
  4. Основные генетические термины и символика.
  5. Гибридологический метод изучения наследственности.
  6. Основные наследственные закономерности, открытые Г. Менделем: I и II Законы чистоты гамет.

Учитель вводит занимательный элемент развивающего обучения. На отдельном плакате – сюжетный рисунок. Вопрос учащимся: какую наследственную ошибку допустил художник в данном рисунке? Ответ: он забыл о наследственности и перепутал детей животных.

2. Работа по опережающим заданиям

Выступления учащихся о новостях генетической науки.

Проект: "Геном человека"

Международный проект был начат в 1988 г. В проекте работает несколько тысяч из более чем 20 стран. С 1989 г. в нём участвует и Россия. Все хромосомы поделены между странами – участницами, и России для исследования достались 3, 13, 19 хромосомы.
Основная цель проекта – определить локализацию всех генов в молекуле ДНК.
Что представляет собой основной предмет проекта – геном человека?
Известно, что в ядре клетки 46 хромосом (соматических). Каждая хромосома представлена одной молекулой ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке ~2 м, они содержат около 3,2 млрд. пар нуклеотидов. Общая длина ДНК во всех клетках человеческого тела (их примерно 5 х 10 13) составляет 10 11 км, что почти в тысячу больше расстояния от Земли до Солнца.
Как же помещаются в ядре такие длиннющиемолекулы? Оказывается, в ядре существует механизм ""насильственной укладки" ДНК. В самой молекуле гены повторяются много раз. Например, ген, кодирующий р ДНК повторяется около 2 тыс. раз.
К 1998 г. расшифрована примерно половина генетической информации человека.
В таблице приведены данные (известные на сегодня) по количеству генов, вовлечённых в развитие и функционирование некоторых органов и тканей человека.

Название органа, ткани, клетки Количество генов
1. Белая кровяная клетка 2164
2. Гладкая мускулатура 127
3. Глаз 574
4. Желчный пузырь 788
5. Кожа 620
6. Лёгкие 1887
7. Матка 1859
8. Мозг 3195
9. Молочная железа 696
10. Печень 2091
11. Плацента 1290
12. Поджелудочная железа 1094
13. Селезёнка 1094
14. Семенник 370
15. Сердце 1195
16. Скелетная мышца 735
17. Слюнная железа 17
18. Тонкий кишечник 297
19. Щитовидная железа 584
20. Эритроцит

Сегодня установлено, что предрасположенность к алкоголизму или наркомании тоже может иметь генетическую основу. Открыто уже 7 генов, повреждения которых связаны с возникновением с зависимости от химических веществ. Из тканей больных алкоголизмом был выделен мутантный ген, который приводит к дефектам клеточных рецепторов дофамина – вещества, играющего ключевую роль в работе центров удовольствия мозга Недостаток дофамина или дефекты его рецепторов напрямую связаны с развитием алкоголизма.
Сегодня можно на основе генов узнать человека по следовым количествам крови, чешуйкам кожи, и т.п.
В настоящее время интенсивно изучается проблема зависимости способностей и талантов человека от его генов.
Главная задача будущих исследований – выявление различий между людьми на генетическом уровне. Это позволит создавать генные портреты людей и эффективнее лечить болезни, оценивать способности и возможности каждого человека, оценивать степень приспособленности конкретного человека к той или иной экологической обстановке
Необходимо упомянуть об опасности распространения генетической информации о конкретных людях. В некоторых странах уже приняты законы, запрещающие распространение такой информации.

Гены и поведение

Уже сотни лет ведётся спор о том, что влияет на характер и темперамент, интеллект и творчество – наследственность или воспитание.
Английский биолог Френсис Гальтон в 1865г. (двоюродный брат Ч.Дарвина) исследовал родословные выдающихся людей и пришёл к выводу о наследственной природе таланта.
В настоящее время генетикам удалось найти гены, которые определяют некоторые психологические характеристики человека. Было установлено, что чтение связано с одним из участков хромосомы 15. Многие гены участвуют в развитии умственных способностей.
Голландский генетик Гансу Бруннеру исследовал семью, в 3 х поколениях которой 14 мужчин – дядей, братьев, племянников – проявляли нарушение поведения (агрессивность, умственную отсталость и т.д.) Он установил, что это не просто нарушения, а заболевание, связанное с X – хромосомой. Оно передавалось через женщин (которые сами были здоровыми) и проявлялось только у мужчин. У всех обследованных мужчин была мутация в гене.
Американский генетик Кен Кендлер определил, что тревожность и депрессия на 33–46 % определяются наследственностью. Однако, как гены влияют на человека, ещё неразрешенная проблема.

Анализ генома человека завершён?

В Вашингтоне 6 апреля 2000 г. состоялось заседание комитета по науке Конгресса США, на котором было заявлено о завершении расшифровки нуклеотидных последовательностей всех необходимых фрагментах генома человека. Ожидается, что предварительная работа по составлению последовательностей всех генов (их около 80 тыс. и они содержат примерно 3 млрд. "букв") ДНК будет завершена через 3–6 недель. Окончательная расшифровка генома человека будет завершена в 2003 году.
На вопрос, не станет ли теперь реальностью целенаправленное изменение человеческой расы, главный специалист компании ответил, что для полного определения функций всех генов может потребоваться около 100 лет, а до тех пор о целенаправленных изменениях говорить не приходится.
В декабре 1999 г. исследователи Великобритании и Японии объявили об установлении структуры 22 хромосомы. Она содержит 33 млн. пар оснований и в её структуре нерасшифрованными остались 11 участков. Для этой хромосомы установлены функции примерно половины генов. Установлено, с дефектом этой хромосомы связано 27 различных заболеваний, например – шизофрения, лейкемия.

Преподаватель: В основу современной науки – генетики легли закономерности наследования признаков, обнаруженные Г. Менделем. Познакомимся кратко с его биографией.

Выступление студента.

Биография Грегора Менделя

Грегор Иоганн Мендель стал основоположником учения о наследственности, т. е. науки – генетики.
Родился Иоганн Мендель 22 июля 1822 г. в бедной семье крестьянина в небольшой деревушке в Австрийской империи (сегодня это территория Чехии). Благодаря своим незаурядным способностям ему удалось закончить сначала гимназию, а затем двухгодичные философские курсы.
В 1843 г. Мендель поступил в августинский монастырь г. Брно. По обычаю, приняв монашеский сан, Иоганн Мендель получил своё второе имя – Грегор.
Став монахом, Мендель наконец-то был избавлен от вечной нужды и заботы о куске хлеба.
В монастыре он стал всерьёз заниматься садоводством и выпросил под садик небольшой огороженный забором участок.
Кто бы мог предположить, что на этом крохотном участке будут установлены всеобщие биологические законы наследственности. Весной 1845 г. Мендель высадит здесь горох.
А ещё раньше, в его монашеской келье, появятся ёж, лисица и множество мышей. Мендель скрещивал их, наблюдал, какое получалось потомство. Но монастырское начальство проведало о его опытах с мышами и распорядилось убрать мышей, чтобы не бросать тень на репутацию монастыря.
Тогда Мендель перенёс свои опыты на горох, росший в монастырском садике.
Позднее он шутливо говорил своим гостям:
– Не хотите ли посмотреть на моих детей?
Удивлённые гости шли вместе с ним в сад, где он указывал им на грядки с горохом.

3. Самостоятельная работа студентов с источником научной информации

Раздаточный материал на столах студентов – статья "Как работал Мендель". Задание для студентов по статье: докажите, что выбор растения горох для опытов было у Менделя удачным.

Как работал Г. Мендель

Г. Мендель проводил свои опыты, используя горох. Выбор объекта для экспериментов был удачным:

  • Bo времена, когда жил Г. Мендель уже существовало много сортов гороха, различающихся между собой по многим признакам.
  • Растение горох легко выращивать.
  • Растение самоопыляемое (т. е., когда пыльца попадает на рыльце пестика того же самого цветка, и такой цветок размножается в чистоте, без влияния факторов окружающей среды).
  • Данное растение можно искусственно опылять, что и делал Г. Мендель. (Для этого пыльцу из пыльника одного сорта гороха с помощью кисточки он наносил на рыльце пестика другого сорта гороха. Затем надевал на искусственно опылённые цветки маленькие колпачки, чтобы сюда случайно не попала чужая пыльца).
  • Г. Мендель работал лишь с небольшим количеством признаков, это были:
    • Высота стебля;
    • Форма семян;
    • Окраска семян;
    • Форма плодов;
    • Окраска плодов;
    • Расположение цветков;
    • Окраска лепестков.
  • Над своими опытами Г. Мендель работал в течении 2 – 3 лет и всегда использовал контрольные растения, а так же вёл точный количественный учёт потомства, которое всегда в его опытах было многочисленным.

4. Объяснение нового материала

Сущность гибридологического метода изучения наследственности. I закон Г. Менделя

В его основе лежит X (т. е. гибридизация) организмов, отличающихся между собой по одному или нескольким признакам, а так же в детальном анализе потомства, (т. е. гибридов) от названия которых и метод стал называться гибридологический.

Моногибридное скрещивание – это скрещивание, в котором родительские формы отличаются по одной паре признаков.

Основные генетические символы:

X – гибридизация или скрещивание;
Р – родительские формы;
– женский организм (символ планеты Венера – зеркало Венеры);
– мужской организм (символ планеты Марс – щит и копьё);
F 1 или F 2 и т.д. (от лат. filis – дети) потомки или гибриды.

Преподаватель: Вычерчиваем схему (цветным мелом) моногибридного скрещивания, проводим X по одной паре признаков (цвет семян гороха). Все гибриды первого поколения получились единообразны по цвету семян. Так была сформулирована первая закономерность наследственности, которая в науке звучит как I-й закон Менделя . Он гласит:

  • Доминантный признак: это признак преобладающий, который проявляется сразу в первом поколении.
  • Рецессивный признак: отступающий признак и он начинает проявляться только с F2 поколения.

Установление 2 й наследственной закономерности, открытой Г. Менделем. II закон Г. Менделя

Преподаватель: Г. Мендель поставил задачу: выяснить, как будет наследоваться признак (цвет семян) у гибридов F 2 ?

Полученную закономерность в F 2 Г. Мендель назвал Законом расщепления признаков. Он гласит:

Фенотип – это совокупность внешних и внутренних признаков организма.

В доме восемь дробь один
У заставы Ильича
Жил высокий гражданин
По прозванью Каланча,
По фамилии – Степанов
И по имени – Степан,
Из районных великанов
Самый главный великан.

У Степана сын родился
Малыша зовут Егор
Возле мамы на кровати
На виду у прочих мам
Спит ребёнок небывалый
Не малыш, а целый малый,
Весит он пять килограмм.
Богатырь, а не ребёнок,
Как не верить чудесам,
Вырастает из пелёнок
Не по дням, а по часам.

Закон чистоты гамет, установленный Г. Менделем

Преподаватель: Г. Мендель пытался объяснить наследственную природу признака. Он установил, что признаки организмов определяются отдельными факторами наследственности. В настоящее время эти наследственные факторы называют генами. Давайте вспомним знания о гене.

5. Фронтальный опрос по домашнему заданию.

1. Что такое хромосомы и где они расположены?
2. Что такое ген?
3. Какой набор хромосом называется диплоидным?
4. Какой набор хромосом называется гаплоидным?
5. Что такое гамета?
6. Что такое зигота?

Закон чистоты гамет:

Преподаватель: Г. Мендель ввёл буквенную символику наследственных факторов (т. е. генов). А, В, С – гены, отвечающие за доминантный признак; а, в, с – гены, отвечающие за рецессивный признак. Генотип – совокупность генов, полученная от родителей. Повторно составляем схему моногибридного скрещивания, но по генотипу. (Плакат на доске)
Любой организм содержит 2 гена, отвечающих за развитие одного признака, один от отца, другой от матери. При образовании гамет из каждой пары генов, в гамету попадает только один. Составляем ход моногибридного скрещивания. На доске модель-аппликация:

Гомозигота – это зигота, содержащая одинаковые гены АА или аа ;
Гетерозигота
– это зигота, содержащая разные гены Аа.

6. Самостоятельная работа учащихся

Задание:

1. Какие типы гамет образуются в следующих генотипах:

2. Какова окраска семян при следующих генотипах: АА; Аа; аа?

III. Закрепление урока

Индивидуальная работа учащихся по тесту.

Вариант 1

1. Исследованием закономерностей наследственности и изменчивости занимается наука:

A. Селекция;
B. Физиология;
C. Экология;
D. Генетика.

2. Свойство родительских организмов передавать свои признаки и особенности развития потомству называют:

A. Изменчивостью;
B. Наследственностью;
C. Приспособленностью;
D. Выживаемостью.

3. Признак, который проявляется сразу же в первом поколении и подавляет проявление противоположного признака, называют:

A. Доминантным;
B. Рецессивным;
C. Промежуточным;
D. Ненаследственным.

4. Совокупность генов, полученных потомством от родителей, называют:

A. Фенотипом;
B. Гомозиготой;
C. Гетерозиготой;
D. Генотипом.

5. Материальной основой наследственности являются:

A. Гены, расположенные в молекуле ДНК;
B. Молекулы АТФ;
C. Молекулы белка;
D. Хлоропласты и митохондрии.

6. "Гибриды первого поколения при дальнейшем размножении дают расщепление, примерно 4 ю часть потомства составляют особи с рецессивными признаками" – это формулировка:

A. Закона Моргана;
B. Первого закона Менделя;
C. Второго закона Менделя;
D. Правила Менделя.

Вариант 2

1. Генетика занимается изучением:

A. Процессов жизнедеятельности организмов;
B. Классификацией организмов;
C. Закономерностей наследственности и изменчивости организмов;
D. Взаимосвязей организмов и среды обитания.

2. Наследственность – это свойство организмов:

А. Взаимодействовать со средой обитания;
B. Реагировать на изменение окружающей среды;
С. Передавать свои признаки и особенности развития потомству;
D. Приобретать новые признаки в процессе индивидуального развития.

3. Гены, расположенные в молекуле ДНК, представляют собой:

А. Вещество, содержащее богатые энергией связи;
В. Материальные основы наследственности;
C. Вещества, которые ускоряют химические реакции в клетке;
D. Полипептидную цепь, выполняющую многие функции в клетке.

4. Генотип – это совокупность:

А. Генов, полученная потомством от родителей;
В. Внешних признаков организма;
С. Внутренних признаков организма;
D. Реакций организма на воздействие среды.

5. Скрещивание особей, отличающихся по одной паре признаков, называют:

А. Полигибридным;
В. Анализирующим;
С. Дигибридным;
D. Моногибридным.

6. Признак, который у особи внешне не проявляется, называют:

А. Рецессивным;
В.Доминантным;
С Промежуточным;
D.Модификацией.

Ответы:

1 вариант: 2 вариант:
1 – D;
2 – В;
3 – А;
4 – D;
5 – А;
6 – С;
1 – С;
2 – С;
3 – В;
4 – С;
5 – D;
6 – А.

IV. Подведение итогов

Объяснение выполнения домашнего задания.

Генетика – область биологии, изучающая наследственность и изменчивость.

Введение

Человек всегда стремился управлять живой природой: структурно-функциональной организацией живых существ, их индивидуальным развитием, адаптацией к окружающей среде, регуляцией численности и т. д. Генетика ближе всего подошла к решению этих задач, вскрыв многие закономерности наследственности и изменчивости живых организмов и поставив их на службу человеческому обществу. Этим объясняется ключевое положение генетики среди других биологических дисциплин.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже 18-19 вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков. Законы наследственности, открытые Г. Менделем, заложили основы становления генетики как самостоятельной науки.


Как всё начиналось

В начале 19 века, в 1822 году, в Австрийской Моравии, в деревушке Ханцендорф, в крестьянской семье родился мальчик. Он был вторым ребёнком в семье. При рождении его назвали Иоганном, фамилия отца бала Мендель.

Жилось нелегко, ребенка не баловали. С детства Иоганн привык к крестьянскому труду и полюбил его, в особенности садоводство и пчеловодство. Как пригодились ему навыки, приобретённые в детстве.

Выдающиеся способности обнаружились у мальчика рано. Менделю было 11 лет, когда его перевели из деревенской школы в четырехклассное училище ближайшего городка. Он и там сразу проявил себя и уже через год оказался в гимназии, в городе Опаве.

Платить за учебу и содержать сына родителям было трудно. А тут ещё обрушилось на семью несчастье: отец тяжело пострадал – ему на грудь упало бревно. В 1840 Иоганн окончил гимназию и параллельно – школу кандидатов в учителя.

Несмотря на трудности, Мендель продолжает учебу. Теперь уже в философских классах в городе Оломеуц. Тут учат не только философии, но и математике, физике – предметам, без которых Мендель, биолог в душе, не мыслил дальнейшей жизни. Биология и математика! В наши дни это сочетание неразрывно, но в 19 веке казалось нелепым. Именно Мендель был первым, кто продолжил в биологии широкую колею для математических методов.

Он продолжает учиться, но жизнь тяжела, и вот настают дни, когда по собственному признанию Менделя, “дальше переносить подобное напряжение не под силу”. И тогда в его жизни наступает переломный момент: Мендель становится монахом. Он отнюдь не скрывает причин, толкнувших его на этот шаг. В автобиографии пишет: “Оказался вынужденным занять положение, освобождающее от забот о пропитании”. Не правда ли, откровенно? И при этом ни слова о религии, боге. Неодолимая тяга к науке, стремление к знаниям, а вовсе не приверженность к религиозной доктрине привели Менделя в монастырь. Ему исполнился 21 год. Постригавшиеся в монахи в знак отрешения от мира принимали новое имя. Иоганн стал Грегором.

Был период, когда его сделали священником. Совсем недолгий период. Утешать страждущих, снаряжать в последний путь умирающих. Не очень – то это нравилось Менделю. И он делает все, чтобы освободиться от неприятных обязанностей.

Иное дело учительство. Мендель преподавал в городской школе, не имея диплома учителя, и преподавал хорошо. Его бывшие ученики с теплотой вспоминают о нем – сердечном, благожелательном, умном, увлеченном своим предметом.

Интересно, что Мендель дважды сдавал экзамен на звание учителя и … дважды проваливался! А ведь он был образованнейшим человеком. Нечего говорить о биологии, классиком которой Мендель вскоре стал, он был высокоодаренный математик, очень любил физику и отлично знал её.

Провалы на экзаменах не мешали его преподавательской деятельности. В городском училище Брно Менделя-учителя очень ценили. И он преподавал, не имея диплома.

В жизни Менделя были годы, когда он превращался в затворника. Но не перед иконами склонял он колена, а… перед грядками с горохом. С утра и до самого вечера трудился он в маленьком монастырском садике (35 метров длины и 7 метров ширины). Здесь с 1854 по 1863 год провел Мендель свои классические опыты, результаты которых не устарели по сей день. Своим научными успехами Г.Мендель обязан также и необычайно удачным выбором объекта исследований. Всего в четырёх поколениях гороха он обследовал 20 тысяч потомков.

Около 10 лет шли опыты по скрещиванию гороха. Каждую весну Мендель высаживал растения на своем участке. Доклад “Опыты над растительными гибридами”, который был прочитан брюнским естествоиспытателям в 1865 году, оказался неожиданностью даже для друзей.

Горох был удобен по различным соображениям. Потомство этого растения обладает рядом чётко различимых признаков - зелёный или жёлтый цвет семядолей, гладкие или, напротив, морщинистые семена, вздутые или перетянутые бобы, длинная или короткая стеблевая ось соцветия и так далее. Переходных, половинчатых "смазанных" признаков не было. Всякий раз можно было уверенно говорить "да" или "нет", "или - или", иметь дело с альтернативой. А потому и оспаривать выводы Менделя, сомневаться в них не приходилось. И все положения теории Менделя уже никем не были опровергнуты и по заслугам стали частью золотого фонда науки.


Классические законы Г. Менделя

Основные законы наследуемости были описаны чешским монахом Грегором Менделем более века назад, когда он преподавал физику и естественную историю в средней школе г. Брюнна (г. Брно).

Мендель занимался селекционированием гороха, и именно гороху, научной удаче и строгости опытов Менделя мы обязаны открытием основных законов наследуемости: закона единообразия гибридов первого поколения, закона расщепления и закона независимого комбинирования.

Некоторые исследователи выделяют не три, а два закона Менделя. При этом некоторые ученые объединяют первый и второй законы, считая, что первый закон является частью второго и описывает генотипы и фенотипы потомков первого поколения (F1). Другие исследователи объединяют в один второй и третий законы, полагая, что «закон независимого комбинирования» есть в сущности «закон независимости расщепления», протекающего одновременно по разным парам аллелей. Однако в отечественной литературе речь идет о трех законах Менделя.

Г. Мендель не был пионером в области изучения результатов скрещивания растений. Такие эксперименты проводились и до него, с той лишь разницей, что скрещивались растения разных видов. Потомки подобного скрещивания (поколение F1) были стерильны, и, следовательно, оплодотворения и развития гибридов второго поколения (при описании селекционных экспериментов второе поколение обозначается F2) не происходило. Другой особенностью доменделевских работ было то, что большинство признаков, исследуемых в разных экспериментах по скрещиванию, были сложны как по типу наследования, так и с точки зрения их фенотипического выражения. Гениальность Менделя заключалась в том, что в своих экспериментах он не повторил ошибок предшественников. Как писала английская исследовательница Ш. Ауэрбах, «успех работы Менделя по сравнению с исследованиями его предшественников объясняется тем, что он обладал двумя существенными качествами, необходимыми для ученого: способностью задавать природе нужный вопрос и способностью правильно истолковывать ответ природы». Во-первых, в качестве экспериментальных растений Мендель использовал разные сорта декоративного гороха внутри одного рода Pisum. Поэтому растения, развившиеся в результате подобного скрещивания, были способны к воспроизводству. Во-вторых, в качестве экспериментальных признаков Мендель выбрал простые качественные признаки типа «или /или» (например, кожура горошины может быть либо гладкой, либо сморщенной), которые, как потом выяснилось, контролируются одним геном. В-третьих, подлинная удача Менделя заключалось в том, что выбранные им признаки контролировались генами, содержавшими истинно доминантные аллели. И, наконец, интуиция подсказала Менделю, что все категории семян всех гибридных поколений следует точно, вплоть до последней горошины, пересчитывать, не ограничиваясь общими утверждениями, суммирующими только наиболее характерные результаты (скажем, таких–то семян больше, чем таких-то).

Мендель экспериментировал с 22 разновидностями гороха, отличавшимися друг от друга по 7 признакам (цвет, текстура семян и т.д.). Свою работу Мендель вел восемь лет, изучил 20 000 растений гороха. Все формы гороха, которые он исследовал, были представителями чистых линий; результаты скрещивания таких растений между собой всегда были одинаковы. Результаты работы Мендель привел в статье 1865 г., которая стала краеугольным камнем генетики. Трудно сказать, что заслуживает большего восхищения в нем и его работе – строгость проведения экспериментов, четкость изложения результатов, совершенное знание экспериментального материала или знание работ его предшественников.


Первый закон единообразия гибридов первого поколения

Данный закон утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F1), все особи которого гетерозиготны. Все гибриды F1 могут иметь при этом либо фенотип одного из родителей (полное доминирование), как в опытах Менделя, либо, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения F1, могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и aа) все их потомки одинаковы по генотипу (гетерозиготны – Аа), а значит, и по фенотипу.


Второй закон расщепления

Этот закон называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки – гаметы, то одна их половина несет один аллель данного гена, а вторая – другой. Поэтому при скрещивании таких гибридов F1 между собой среди гибридов второго поколения F2 в определенных соотношениях появляются особи с фенотипами, как исходных родительских форм, так и F1.
В основе этого закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов F1 гамет двух типов, в результате чего среди гибридов F2 выявляются особи трех возможных генотипов в соотношении 1АА: 2 Аа: 1аа. Иными словами, «внуки» исходных форм – двух гомозигот, фенотипически отличных друг от друга, дают расщепление по фенотипу в соответствии со вторым законом Менделя.

Однако это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования выделяются 75% особей с доминантным и 25% с рецессивным признаком, т.е. два фенотипа в отношении 3 к 1. При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% – фенотипы исходных родительских форм, т. е. наблюдается расщепление 1 к 2 к 1.


Третий закон независимого комбинирования (наследования) признаков

Этот закон говорит о том, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков первого поколения (т.е. в поколении F2) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков. Например, в случае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F2) выявляются особи с четырьмя фенотипами в соотношении 9к3к3к1. При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два – новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения (F 1) 4 типов гамет (АВ, Ав, аВ, ав), а после образования зигот – к закономерному расщеплению по генотипу и, соответственно, по фенотипу в следующем поколении (F2).

Парадоксально, но в современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки должны быть выбраны для его дигибридных экспериментов, – он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы иными, поскольку сцепленные признаки наследуются не независимо друг от друга.
С чем же связана важность исключений из закона Менделя о независимом комбинировании? Дело в том, что именно эти исключения позволяют определять хромосомные координаты генов (так называемый локус).

В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосоме в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений – явление кроссинговера, приводящего к перекомбинации (рекомбинации) генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками.

Кроссинговер – процесс вероятностный, а вероятность того, произойдет или не произойдет разрыв хромосомы на данном конкретном участке, определяется рядом факторов, в частности физическим расстоянием между двумя локусами одной и той же хромосомы. Кроссинговер может произойти и между соседними локусами, однако его вероятность значительно меньше вероятности разрыва (приводящего к обмену участками) между локусами с большим расстоянием между ними.

Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет. Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т. Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы – любимого объекта генетиков. Если два локуса находятся на значительном расстоянии друг от друга, то разрыв между ними будет происходить так же часто, как при расположении этих локусов на разных хромосомах.

Используя закономерности реорганизации генетического материала в процессе рекомбинации, ученые разработали статистический метод анализа, называемый анализом сцепления.


Условия существования законов

Законы Менделя в их классической форме действуют при наличии определенных условий. К ним относятся:

1) гомозиготность исходных скрещиваемых форм;

2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении);

3) одинаковая жизнеспособность зигот всех типов.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (100%-ой частотой проявления анализируемого признака; 100%-ая пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью (т.е. постоянной степенью выраженности признака); постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.


Признание законов менделя

Великие открытия часто признаются не сразу. Хотя труды Общества, где была опубликована статья Менделя, поступили в 120 научных библиотек, а Мендель дополнительно разослал 40 оттисков, его работа имела лишь один благосклонный отклик – от К. Негели, профессора ботаники из Мюнхена. Негели сам занимался гибридизацией, ввел термин «модификация» и выдвинул умозрительную теорию наследственности. Однако он усомнился в том, что выявленные на горохе законы имеет всеобщий характер и посоветовал повторить опыты на других видах. Мендель почтительно согласился с этим. Но его попытка повторить на ястребинке, с которой работал Негели, полученные на горохе результаты оказалась неудачной. Лишь спустя десятилетия стало ясно почему. Семена у ястребинки образуются партеногенетически, без участия полового размножения. Наблюдались и другие исключения из принципов Менделя, которые нашли истолкование гораздо позднее. В этом частично заключается причина холодного приема его работы. Начиная с 1900 г., после практически одновременной публикации статей трех ботаников – Х. Де Фриза, К. Корренса и Э. Чермака-Зейзенегга, независимо подтвердивших данные Менделя собственными опытами, произошел мгновенный взрыв признания его работы. 1900 считается годом рождения генетики.

Вокруг парадоксальной судьбы открытия и переоткрытия законов Менделя создан красивый миф о том, что его работа оставалась совсем неизвестной и на нее лишь случайно и независимо, спустя 35 лет, натолкнулись три переоткрывателя. На самом деле, работа Менделя цитировалась около 15 раз в сводке о растительных гибридах 1881 г., о ней знали ботаники. Более того, как выяснилось недавно при анализе рабочих тетрадей К. Корренса, он еще в 1896 г. читал статью Менделя и даже сделал ее реферат, но не понял в то время ее глубинного смысла и забыл.

Стиль проведения опытов и изложения результатов в классической статье Менделя делают весьма вероятным предположение, к которому в 1936 г. пришел английский математический статистик и генетик Р.Э. Фишер: Мендель сначала интуитивно проник в «душу фактов» и затем спланировал серию многолетних опытов так, чтобы озарившая его идея выявилась наилучшим образом. Красота и строгость числовых соотношений форм при расщеплении (3к1 или 9к3к3к1), гармония, в которую удалось уложить хаос фактов в области наследственной изменчивости, возможность делать предсказания - все это внутренне убеждало Менделя во всеобщем характере найденных им на горохе законов. Оставалось убедить научное сообщество. Но эта задача столь же трудна, сколь и само открытие. Ведь знание фактов еще не означает их понимания. Крупное открытие всегда связано с личностным знанием, ощущениями красоты и целостности, основанных на интуитивных и эмоциональных компонентах. Этот внерациональный вид знания передать другим людям трудно, ибо с их стороны нужны усилия и такая же интуиция.


Значение работ Менделя для развития генетики

В 1863 г. Мендель закончил эксперименты и в 1865 г. на двух заседаниях Брюннского общества естествоиспытателей доложил результаты своей работы. В 1866 г. в трудах общества вышла его статья «Опыты над растительными гибридами», которая заложила основы генетики как самостоятельной науки. Это редкий в истории знаний случай, когда одна статья знаменует собой рождение новой научной дисциплины. Почему принято так считать?

Работы по гибридизации растений и изучению наследования признаков в потомстве гибридов проводились десятилетия до Менделя в разных странах и селекционерами, и ботаниками. Были замечены и описаны факты доминирования, расщепления и комбинирования признаков, особенно в опытах французского ботаника Ш. Нодена. Даже Дарвин, скрещивая разновидности львиного зева, отличные по структуре цветка, получил во втором поколении соотношение форм, близкое к известному менделевскому расщеплению 3к1, но увидел в этом лишь «капризную игру сил наследственности». Разнообразие взятых в опыты видов и форм растений увеличивало количество высказываний, но уменьшало их обоснованность. Смысл или «душа фактов» (выражение Анри Пуанкаре) оставались до Менделя туманными.

Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение. Во-вторых, Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК – вот логическое следствие и магистральный путь развития генетики ХХ века на основе идей Менделя.

Название новой науки – генетика (лат. «относящийся к происхождению, рождению») – было предложено в 1906 г. английским ученым В.Бэтсоном. Датчанин В. Иоганнсен в 1909 г. утвердил в биологической литературе такие принципиально важные понятия, как ген (греч. «род, рождение, происхождение»), генотип и фенотип. На этом этапе истории генетики была принята и получила дальнейшее развитие менделевская, по существу умозрительная, концепция гена как материальной единицы наследственности, ответственной за передачу отдельных признаков в ряду поколений организмов. Тогда же голландский ученый Г. де Фриз (1901) выдвинул теорию изменчивости, основанную на представлении о скачкообразности изменений наследственных свойств в результате мутаций.

Работами Т.Г. Моргана и его школы в США (А. Стертевант, Г. Меллер, К. Бриджес), выполненными в 1910-1925 гг., была создана хромосомная теория наследственности, согласно которой гены являются дискретными элементами нитевидных структур клеточного ядра – хромосом. Были составлены первые генетические карты хромосом плодовой мушки, ставшей к тому времени основным объектом генетики. Хромосомная теория наследственности прочно опиралась не только на генетические данные, но и на наблюдения о поведении хромосом в митозе и мейозе, о роли ядра в наследственности. Успехи генетики в значительной мере определяются тем, что она опирается на собственный метод – гибридологический анализ, основы которого заложил Мендель.


Заключение

Менделевская теория наследственности, т.е. совокупность представлений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследственности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Опыты Менделя послужили основой для развития современной генетики – науки, изучающей два основных свойства организма – наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.


Список используемой литературы

1. Алиханян С.И., Акифьев А.П., Чернин Л.С. Общая генетика: Учеб. – М.: Высш. шк., 1985 г.

2. Гайсинович А.Е. Зарождение и развитие генетики. – М.: Высш. шк., 1988г.

3. Горелов А.А. Концепции современного естествознания. – М.: Владос, 2000 г.

4. Концепции современного естествознания / Под ред. В.Н. Лавриненко, В.П. Ратникова. – М.: ЮНИТИ, 2000 г.

5. Концепции современного естествознания / Самыгин С.И. и др. – Ростов н/Д.: Феникс, 1997 г.

6. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология в экзаменационных вопросах и ответах. – М.: Рольф, Айрис-пресс, 1998 г.

7. Равич-Щербо И.В., Марютина Т.М., Григоренко Е.Л. Психогенетика: Учеб. / Под ред. И.В. Равич-Щербо. - М.: Аспект-Пресс, 2000 г.

8. Рузавин Г.И. Концепции современного естествознания: Курс лекций. – М.: Проект, 2002 г.

Великий вклад Грегора Иоганна Менделя в развитие экспериментальной генетики

Грегор Иоганн Мендель – выдающийся австрийский ботаник, который открыл учение о наследственности, впоследствии названное «менделизмом» в честь ученого. Его также считают основоположником современной генетики, так как выявленные им закономерности наследственных факторов, стали фундаментом для появления этой науки.

Иоганн Мендель родился 20 июля 1822 года в австрийском Хейцендорфе. Интерес к природе проявлял в раннем возрасте, когда подрабатывал садовником. Имя Грегор появилось не случайно. В 1843 году ученый поступил в монахи в Августинский монастырь Святого Фомы в Чехии. Там ему было присвоено имя Грегор. На следующий год он поступил в Брюннский богословский институт, по окончании которого стал священником. Ему давались многие науки. Так, например, он с легкостью мог заменять отсутствующих преподавателей по математике или греческому языку. Однако больше всего его интересовали биология и геология. По совету настоятеля гимназии, в которой он преподавал, в 1851 году Мендель поступил в Венский университет на факультет естественной истории. Здесь он обучался под руководством одного из первых цитологов в мире – Унгера.

В период пребывания в Вене, он живо начал интересоваться проблемой гибридизации растений. В 1850-е годы он проводил немало опытов над растениями, в том числе над горохами в монастырском саду. Именно благодаря этим опытам он смог объяснить законы механизма наследования, которые были позже переименованы в «Законы Менделя». Вскоре вышли в свет его труды под названием «Опыты над растительными гибридами». Сам ученый был уверен, что совершил величайшее открытие. Однако когда его открытие не сработало в опытах с некоторыми животными, он разочаровался в науке и перестал заниматься биологическими исследованиями.

Аджимамбетова Эльмаз

Биография и научные исследования Грегора Менделя.

Скачать:

Подписи к слайдам:

Выполнила: ученица 11 классаСуворовской ОШ Аджимамбетова Эльмаз
Австрийский биолог и ботаник, сыгравший огромную роль в развитии представления о наследственности. Открытие им закономерностей наследования моногенных признаков (эти закономерности известны теперь как Законы Менделя) стало первым шагом на пути к современной генетике.
Грегор Мендель родился 22 июля 1822, Xейнцендорф, Австро-Венгрия, ныне Гинчице. Иоганн родился вторым ребенком в крестьянской семье смешанного немецко-славянского происхождения и среднего достатка, у Антона и Розины Мендель. В 1840 Мендель окончил шесть классов гимназии в Троппау (ныне г. Опава) и в следующем году поступил в философские классы при университете в г. Ольмюце (ныне г. Оломоуц). Однако, материальное положение семьи в эти годы ухудшилось, и с 16 лет Мендель сам должен был заботиться о своем пропитании. Не будучи в силах постоянно выносить подобное напряжение, Мендель по окончании философских классов, в октябре 1843, поступил послушником в Брюннский монастырь (где он получил новое имя Грегор). Там он нашел покровительство и финансовую поддержку для дальнейшего обучения.
В 1847 Мендель был посвящен в сан священника. Одновременно с 1845 года он в течение 4 лет обучался в Брюннской теологической школе. Августинской монастырь св. Фомы был центром научной и культурной жизни Моравии. Помимо богатой библиотеки, он имел коллекцию минералов, опытный садик и гербарий. Монастырь патронировал школьное образование в крае.

Будучи монахом, Грегор Мендель с удовольствием вел занятия по физике и математике в школе близлежащего городка Цнайм, однако не прошел государственного экзамена на аттестацию учителя. Видя его страсть к знаниям и высокие интеллектуальные способности, настоятель монастыря послал его для продолжения обучения в Венский университет, где Мендель в качестве вольнослушателя проучился четыре семестра в период 1851-53, посещая семинары и курсы по математике и естественным наукам, в частности, курс известного физика К. Доплера. Хорошая физико-математическая подготовка помогла Менделю впоследствии при формулировании законов наследования. Вернувшись в Брюнн, Мендель продолжил учительство (преподавал физику и природоведение в реальном училище), однако вторая попытка пройти аттестацию учителя вновь оказалась неудачной.
С 1856 Грегор Мендель начал проводить в монастырском садике (шириной в 7 и длиной в 35 метров) хорошо продуманные обширные опыты по скрещиванию растений (прежде всего среди тщательно отобранных сортов гороха) и выяснению закономерностей наследования признаков в потомстве гибридов. В 1863 он закончил эксперименты и в 1865 на двух заседаниях Брюннского общества естествоиспытателей доложил результаты своей работы. В 1866 в трудах общества вышла его статья «Опыты над растительными гибридами», которая заложила основы генетики как самостоятельной науки. Это редкий в истории знаний случай, когда одна статья знаменует собой рождение новой научной дисциплины.
Он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение.
Грегор Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК - вот логическое следствие и магистральный путь развития генетики 20 века на основе идей Менделя.
- все гибридные растения первого поколения одинаковы и проявляют признак одного из родителей; - среди гибридов второго поколения появляются растения как с доминантными, так и с рецессивными признаками в соотношении 3:1; - два признака в потомстве ведут себя независимо и во втором поколении встречаются во всех возможных сочетаниях; - необходимо различать признаки и их наследственные задатки (растения, проявляющие доминантные признаки, могут в скрытом виде нести задатки рецессивных); - объединение мужских и женских гамет случайно в отношении того, задатки каких признаков несут эти гаметы.
Хотя труды Общества, где была опубликована статья Менделя, поступили в 120 научных библиотек, а Мендель дополнительно разослал 40 оттисков, его работа имела лишь один благосклонный отклик - от К. Негели, профессора ботаники из Мюнхена. Негели сам занимался гибридизацией, ввел термин «модификация» и выдвинул умозрительную теорию наследственности. Однако, он усомнился в том, что выявленные на горохе законы имеет всеобщий характер и посоветовал повторить опыты на других видах. Мендель почтительно согласился с этим. Но его попытка повторить на ястребинке, с которой работал Негели, полученные на горохе результаты оказалась неудачной. Лишь спустя десятилетия стало ясно почему. Семена у ястребинки образуются партеногенетически, без участия полового размножения. Наблюдались и другие исключения из принципов Грегора Менделя, которые нашли истолкование гораздо позднее. В этом частично заключается причина холодного приема его работы. Начиная с 1900, после практически одновременной публикации статей трех ботаников - Х. Де Фриза, К. Корренса и Э. Чермака-Зейзенегга, независимо подтвердивших данные Менделя собственными опытами, произошел мгновенный взрыв признания его работы. 1900 считается годом рождения генетики.
Стиль проведения опытов и изложения результатов в классической статье Менделя делают весьма вероятным предположение, к которому в 1936 пришел английский математический статистик и генетик Р. Э. Фишер: Мендель сначала интуитивно проник в «душу фактов» и затем спланировал серию многолетних опытов так, чтобы озарившая его идея выявилась наилучшим образом. Красота и строгость числовых соотношений форм при расщеплении (3:1 или 9:3:3:1), гармония, в которую удалось уложить хаос фактов в области наследственной изменчивости, возможность делать предсказания - все это внутренне убеждало Менделя во всеобщем характере найденных им на горохе законов. Оставалось убедить научное сообщество. Но эта задача столь же трудна, сколь и само открытие. Ведь знание фактов еще не означает их понимания. Крупное открытие всегда связано с личностным знанием, ощущениями красоты и целостности, основанных на интуитивных и эмоциональных компонентах. Этот внерациональный вид знания передать другим людям трудно, ибо с их стороны нужны усилия и такая же интуиция.
В конце своей жизни Мендель сказал: «Мои научные труды доставили мне много удовольствия, и я убежден, что не пройдет много времени – и весь мир признает результаты моих трудов».Умер Грегор Мендель в 1884г.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама