THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Которые нужны всему живому. В этой статье мы рассмотрим строение и функции липидов. Они бывают разнообразными как по структуре, так и по функциям.

Строение липидов (биология)

Липид — это сложное органическое химическое соединение. Оно состоит из нескольких компонентов. Давайте рассмотрим строение липидов более подробно.

Простые липиды

Строение липидов этой группы предусматривает наличие двух компонентов: спирта и жирных кислот. Обычно в химический состав таких веществ входят только три элемента: карбон, гидроген и оксиген.

Разновидности простых липидов

Они делятся на три группы:

  • Алкилацилаты (воски). Это сложные эфиры высших жирных кислот и одно- или двухатомных спиртов.
  • Триацилглицерины (жиры и масла). Строение липидов этого вида предусматривает наличие в составе глицерина (трехатомного спирта) и остатков высших жирных кислот.
  • Церамиды. Сложные эфиры сфингозина и жирных кислот.

Сложные липиды

Вещества данной группы состоят не из трех элементов. Помимо них, они включают в свой состав чаще всего сульфур, нитроген и фосфор.

Классификация сложных липидов

Их также можно разделить на три группы:

  • Фосфолипиды. Строение липидов этой группы предусматривает, помимо остатков и высших жирных кислот, наличие остатков фосфорной кислоты, к которым присоединены добавочные группы различных элементов.
  • Гликолипиды. Это химические вещества, образующиеся в результате соединения липидов с углеводами.
  • Сфинголипиды. Это производные алифатических аминоспиртов.

Первые два типа липидов, в свою очередь, разделяются на подгруппы.

Так, разновидностями фосфолипидов можно считать фосфоглицеролипиды (содержат в своем составе глицерин, остатки двух жирных и аминоспирт), кардиолипины, плазмалогены (содержат в своем составе ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) и сфингомиелины (вещества, которые состоят из сфингозина, жирной кислоты, фосфорной кислоты и аминоспирта холина).

К видам гликолипидов относятся цереброзиды (кроме сфингозина и жирной кислоты, содержат галактозу либо глюкозу), ганглиозиды (содержат олигосахарид из гексоз и сиаловых кислот) и сульфатиды (к гексозе прикреплена серная кислота).

Роль липидов в организме

Строение и функции липидов взаимосвязаны. Благодаря тому, что в их молекулах одновременно присутствуют полярные и неполярные структурные фрагменты, эти вещества могут функционировать на границе раздела фаз.

Липиды обладают восемью основными функциями:

  1. Энергетическая. За счет окисления этих веществ организм получает более 30 процентов всей необходимой ему энергии.
  2. Структурная. Особенности строения липидов позволяют им быть важной составляющей оболочек. Они входят в состав мембран, выстилают различные органы, образуют мембраны нервных тканей.
  3. Запасающая. Данные вещества являются формой сбережения организмом жирных кислот.
  4. Антиокисдантная. Строение липидов позволяет им выполнять и такую роль в организме.
  5. Регуляторная. Некоторые липиды являются посредниками гормонов в клетках. Кроме того, из липидов формируются некоторые гормоны, а также вещества, стимулирующие иммуногенез.
  6. Защитная. Подкожная прослойка жира обеспечивает термическую и механическую защиту организма животного. Что касается растений, то из восков формируется защитная оболочка на поверхности листьев и плодов.
  7. Информационная. Липиды ганглиозиды обеспечивают контакты между клетками.
  8. Пищеварительная. Из липида холестерина формируются участвующие в процессе переваривания пищи.

Синтез липидов в организме

Большинство веществ этого класса синтезируются в клетке из одного и того же исходного вещества — уксусной кислоты. Регулируют обмен жиров такие гормоны, как инсулин, адреналин и гормоны гипофиза.

Существуют также липиды, которые организм не способен производить самостоятельно. Они обязательно должны попадать в организм человека с пищей. Содержатся они в основном в овощах, фруктах, зелени, орехах, злаках, подсолнечном и оливковом маслах и других продуктах растительного происхождения.

Липиды-витамины

Некоторые витамины по своей химической природе относятся к классу липидов. Это витамины А, D, Е и К. Они должны поступать в организм человека с пищей.

в организме
Витамин Функции Проявление недостатка Источники
Витамин А (ретинол) Участвует в росте и развитии эпителиальной ткани. Входит в состав родопсина — зрительного пигмента. Сухость и шелушение кожи. Нарушение зрения при плохом освещении. Печень, шпинат, морковь, петрушка, красный перец, абрикосы.
Витамин К (филлохинон) Участвует в обмене кальция. Активирует белки, ответственные за свертывание крови, принимает участие в формировании костной ткани. Окостенение хрящей, нарушение свертываемости крови, отложение солей на стенках сосудов, деформация костей. Дефицит витамина К случается очень редко. Синтезируется бактериями кишечника. Также содержится в листьях салата, крапивы, шпината, капусты.
Витамин D (кальциферол) Принимает участие в обмене кальция, формировании костной ткани и эмали зубов. Рахит Рыбий жир, желток яиц, молоко, сливочное масло. Синтезируется в коже под воздействием ультрафиолета.
Витамин Е (токоферол) Стимулирует иммунитет. Участвует в регенерации тканей. Защищает мембраны клеток от повреждений. Повышение проницаемости мембран клеток, снижение иммунитета. Овощи, растительные масла.

Вот мы и рассмотрели строение и свойства липидов. Теперь вы знаете, какими бывают эти вещества, в чем заключаются отличия разных из групп, какую роль липиды выполняют в организме человека.

Заключение

Липиды — сложные органические вещества, которые делятся на простые и сложные. Они выполняют в организме восемь функций: энергетическую, запасающую, структурную, антиоксидантную, защитную, регуляторную, пищеварительную и информационную. Кроме того, существуют липиды-витамины. Они выполняют множество биологических функций.

Липиды – органические вещества, которые: 1) плохо растворимы или нерастворимы в воде, но растворяются в органических растворителях;2) являются настоящими или потенциальными эфирами жирных кислот; 3)усваиваются и используются живыми организмами.

1. Резервные липиды (жиры жировых депо) – кол-во и состав непостоянны, зависят от режима питания и физического состояния организма.

2. Структурные липиды - их кол-во и состав в организме строго постоянны, генетически обусловлены и в норме не зависят от режима питания, функционального состояния организма.

Классификация липидов по химическому строению:

Омыляемые

Неомыляемые

Высшие жирные кислоты

Высшие спирты

Стероиды

Полиизопреноид­ные соединения (терпеноиды,

Каротиноиды)

Нейтральные жиры (МАГ, ДАГ, ТАГ, диольные липиды)

Фосфолипиды

Гликолипиды

Cульфолипиды

Стеролы (холестерол)

Стероидные гормоны

Глицерофосфолипиды (фосфоацилглицеролы)

Сфингофоcфатиды

Фосфатидилэтаноламины

Фосфатидилхолины

Фосфатидилсери-ны

Фосфатидилинозитол

Фосфатидилглицеролы

Дифосфатидилглицеролы (кардиолипины)

Плазмалогены

Цереброзиды

Ганглиозиды

Функции простых липидов :

1. Энергетическая функции (основное Энергетическое топливо клетки) . Преимущества жиров в качестве источников энергии перед углеводами: 1) большая теплотворная способность (1 г ТАГ – 9,3 ккал, а 1г углеводов – 4 ккал). 2) из-за гидрофобности жир откладывается про запас в безводной среде, а значит, он занимает меньший объем. В результате запасов липидов хватает на месяц жизни без пищи, а углеводов – только на сутки.

2. Терморегуляторная функция благодаря: а) жир плохо проводит тепло, поэтому жировая клетчатка хороший теплоизолятор; б) при охлаждении организма на генерирование тепла за счет выделения энергии расходуются все те же ацилглицеролы.

3. Защитная функция (Механическая защита подкожной жировой клетчатки).

4. Источники эндогенной воды в организме . При окислении 100 г ацилглицеролов образуется 107 г воды.

5. Функция естественных растворителей . Ацилглицеролы обеспечивают всасывание в кишечнике незаменимых ЖК и жирорастворимых витаминов.

6. Предшественники эйкозаноидов .

7. Воска выполняют защитные функции

Функции фосфолипидов :

1) главные компоненты биомембран (особенно лецитин, кефалин)

2) фосфатидилинозит-4,5-бисфосфат (производное фосфотидилинозита) – предшественник важных вторичных посредников – ДАГ и ИФ3

3) регуляторы активности ферментов (фосфатидилхолин, фосфатидилсерин, сфингомиелин активируют или ингибируют активность ферментов, катализирующих процессы свертывания крови).

4) ряд гормонов (половые, гормоны коры надпочечников) являются производными липидов

5) детергенты кишечника и желчного пузыря (важным компонентом желчи и мицелл, образуемых в ходе переваривания пищи).

6) источник арахидоновой кислоты - предшественника эйкозаноидов

7) обеспечивают прикрепление белков к мембране (некоторые внеклеточные белки прикрепляются к внешней стороне плазматической мембраны за счет образования ковалентных связей с фосфатидилинозитолом: щелочная фосфатаза, липопротеин липаза, холинэстераза).

8) принимают участие в формировании транспортных форм других липидов;

9) могут выполнять энергетическую функцию

10) являются компонентом сурфактанта легких

Функции гликолипидов в организме :

Функции неомыляемых липидов :

1) холестерол – один из основных компонентов биомембран и ЛП, исходное соединение для синтеза ряда стероидных гормонов.

2) к неомыляемым липидам относятся жирорастворимые витамины (А, Д, Е, К)

Липиды – совокупность органических веществ. Находящиеся в живых организмах и делятся на классы липидов. Липиды не растворимы в воде, но могут растворится в эфире, хлорофоре и бензоле. В строении и функции липидов входят множество химических соединений, они обладают функцией запасов энергии. Стероиды и Фосфо липиды входят в , другие липиды, которых немного меньше, могут быть коферментами, переносчиками электронов, свето поглощающими пигментами, гормонами, гидрофобными «якорями» которые содержат белки у мембран.

Организм человека имеет свойства расщеплению липидов, хотя многие из этих веществ обязаны поступать в организм, это (омега-3, омега-6)

Группы липидов

Липиды разделяются на простые и сложные. В простые входят эфиры жирных кислот, в сложные липиды кроме жирных кислот и спирта содержат в себе углеводороды, фосфатные, липопротеиды и прочие. Каждая группа обозначается двумя английскими буквами:

Глицерофосфолипиды (GP)

Глицеролипиды (GL)

Поликетиды (PK).

Сфинголипиды (SP);

Стероидные липиды (ST)

Пренольни липиды (PR);

Жирные кислоты (FA)

Сахаролипиды (SL);

Химический состав липидов

Гликолипиды

Гликолипиды - это класс липидов, содержащих остатки моно- или олигосахаридов. Они могут быть как производными глицерина, так и сфингозина.

(ТГ) Ацилглицериды-глицериды, это эфиры трехатомного спирта и жирных кислот. Гидроксильные классы в малекуле делятся еще на группы:

  1. триглицериды
  2. диглицериды
  3. моноглицериды

Самые распространенные это триглицериды. Их так же называют жиры. Жиры бывают простыми содержащими в себе жирные кислоты, но чаще встречаются смешанные жиры, они так же содержат жирные кислоты. Свойства триглицеридов зависят от его жирнокислотного состава, например, чем больше ненасыщенных кислот, тем больше у них температура плавления. Взять в пример масла, оно содержит в себе почти 95 % ненасыщенных жирных кислот и при комнатной температуре оно тает. Животные жиры в пример сало, при комнатной температуре сохраняют массу, по этому у них все с точностью до наоборот (содержание насыщенных жирных кислот)

Глицерофосфолипиды

Формула глицерофосфолипидов это R1 и R2 жирных кислот, Х это остаток вещества азтмисноя. Глицерофосфолипиды по другому называют фосфоглицериды, они производятфосфатидные кислоты, которые в свою очередь состоят из глицерина . В нем в первую и вторую группу входят R1, R2, а в третью фосфатные кислоты, к нему уже присоединяется радикал Х (азото содержащий)

Жирные кислоты образуют в молекуле гидрофобную часть глицерофосфолипидов. Фосфатная часть в нейтральной среде несет в себе отрицательный заряд, а азотосодержащие соединения, несут положительный разряд, в азотосодержащей среде может быть отрицательно заряженный, по этому ее иногда называют полярной. В водной среде фосфоглицерины вырабатывают мицеллы, головы их повернуты на ружу, а хвостики внутрь.

Распространненые мембраны фосфоглицеридамы – летицин, в нем радикал Х является остатком холина и фосфатидилэтаноламина. Так же есть еще безазотистые глицерофосфолипиды, в него входят Х, инозитол и спирт. Двойные фосфоглицериды были обнаружены во внутренней мембране митохондрии. У животных эфирные липиды обогащают сердце, так же к этой группе соединений относят активные вещества активации тромбоцитов .

Глицерогликолипиды


Глицерогликолипиды – это класс диацилглицеролив атома углерода к которому присоединен гликозильмин. Самым распространенным классом липидов является галактолипиды, в них содержатся остатки галактозы. Они составляют 80% липидов мембран. Вместе с галактолипидами в растительных мембранах можно встретить остаток глюкозы

Сфингогликолипиды


Цереброзидов - это сфингогликолипиды, гидрофильная часть которых представлена остатком моносахарида, обычно глюкозы или галактозы. Галактоцереброзиды распространены в мембранах нейронов.

Глобозиды - олигосахаридных производные церамидов. Вместе с цереброзидов их называют нейтральными гликолипидами, поскольку при pH 7 они незаряженные.

Ганглиозиды - сложные с гликолипидов, их гидрофильная часть представлена олигосахариды, на конце которого всегда находится один или несколько остатков N-ацетилнейраминовои (сиаловой) кислоты, через что они кислотные свойства. Ганглиозиды наиболее распространенные в мембранах ганглионарных нейронов.

Сфингофосфолипиды


Структурная формула сфингомиелина в часть ее составляющей входят церамида которая содержит в себе длинноцепочковые аминоспирты и 1 остаток жирной кислоты, гидрофильного радикала, он в свою очередь соединен с сфингозином. встречается в мембранных клетках, но самой богатой считается нервная ткань. Так же большое их содержания находится в аксонах, от туда и произошло их названия.

Фосфолипиды

Структурные классы липидов это фосфолипиды, общем признаком фосфолипидов это их амфифильность, а она имеет гидрофильную и гидрофобную часть. По этому Они могут образовывать в водной среде мицеллы и би слои.

Стероиды


Стероид это класс природных липидов, в его состав входит циклопентан пергидрофенантреновое ядро. К ним относят спирты с гидроксильным классом в 3-ем положении стеролы с жировыми кислотами – стеридами. У зверей самым распространенным из стеролов это холестерол, что так же входит в состав мембран.

Стероиды выполняют множество функций у различных организмов. Для Половых гормонов, надпочечников , витаминные функции и прочие.

Жироподобные вещества липиды это составляющие, принимающие участие в жизненно важных процессах в организме человека. Есть несколько групп, которые выполняют ведущие функции организма, такие как формирование гормонального фона или обмен веществ. В этой статье подробно расскажем, что это такое и какова роль в процессах жизнедеятельности.

Липиды это органические соединение, куда входят жиры и другие жироподобные вещества. Они активно участвуют в процессе строения клеток и являются частью мембран. Влияют на пропускную способность клеточных мембран, а также на ферментную активность. Влияют на создание межклеточных связей и на разнообразные химические процессы в организме. Нерастворимы в воде, но они растворяются в растворителях органического происхождения (например, бензин или хлороформ). Кроме того, есть виды, которые растворяются в жирах.

Это вещество может быть растительного либо животного происхождения. Если речь о растениях, то больше всего их в орехах и семечках. Животного происхождения в основном расположены в подкожной ткани, нервной и мозговой.

Классификация липидов

Липиды присутствуют практически во всех тканях организма и в крови. Существует несколько классификаций ниже приводим наиболее распространённую, основанную на особенностях структуры и состава. По строению они подразделяются на 3 большие группы, которые подразделяются на меньшие.

Первая группа - простые. Они включают в состав кислород, водород и углерод. Делятся на такие виды:

  1. Жирные спирты. Вещества, включающие от 1 до 3 гидроксильных групп.
  2. Жирные кислоты. Находятся в разных маслах и жирах.
  3. Жирные альдегиды. В составе молекулы содержится 12 атомов углерода.
  4. Триглицериды. Это именно те жиры, которые находятся откладываются в подкожных тканях.
  5. Основания сфингозиновые. Располагаются в плазме, лёгких, печени и почках, встречаются в тканях нервных.
  6. Воски. Это эфиры жирных кислот и спиртов высокомолекулярных.
  7. Предельные углеводороды. Имеют исключительно одинарные связи, при этом атомы углерода в состоянии гибридизации.

Вторая группа - сложные. Они, как и простые, включают в состав кислород, водород и углерод. Но, кроме них также содержат разные дополнительные компоненты. В свою очередь, они подразделяются на 2 подгруппы: полярные и нейтральные.

К полярным относятся:

  1. Гликолипиды. Они появляются после соединения углеводов с липидами.
  2. Фосфолипиды. Это сложные эфиры жирных кислот, а также многоатомных спиртов.
  3. Сфинголипиды. Являются производными аминоспиртов алифатических.

К нейтральным относятся:

  1. Ацилглицериды. Включают в себя моноглицериды и диглицериды.
  2. N-ацетилэтаноламиды. Являют собой этаноламиды жирных кислот.
  3. Церамиды. В них входят жирные кислоты в сочетании с сфингозином.
  4. Эфиры стеринов. Представляют сложные циклические спирты высокомолекулярные. Они содержат жирные кислоты.

Третья группа - оксилипиды. Вещества появляются в результате оксегенирования полиненасыщенных жирных кислот. В свою очередь, подразделяются на 2 типа:

  1. Циклооксигеназного пути.
  2. Липоксигеназного пути.

Значение для мембранных клеток

увеличить

Клеточная мембрана - то, что отделяет клетку от среды вокруг. Кроме защиты, она выполняет довольно большое количество необходимых для нормальной жизнедеятельности функций. Значение липидов в мембране невозможно переоценить.

В клеточной стенке вещество формирует двойной слой. Это помогает клеткам нормально взаимодействовать с окружающей средой. Поэтому не возникает проблем с контролем и регулированием метаболизма. Липиды мембран поддерживают форму клетки.

Часть бактериальной клетки

Неотъемлемая часть строения клетки - липиды бактерий. Как правило, в составе воски либо фосфолипиды. А вот количество вещества непосредственно варьируется в пределах 5-40%. Зависит содержание от типа бактерии, например, в дифтерийной палочке содержится около 5%, а вот в туберкулёзном возбудителе уже более 30%.

Бактериальная клетка отличается тем, что вещества в ней связаны с другими составляющими, например, белками или полисахаридами. В бактериях они имеют гораздо больше разновидностей и выполняют много задач:

  • аккумуляция энергии;
  • участвуют в метаболических процессах;
  • являются составляющей мембран;
  • от них зависит устойчивость клетки к кислотам;
  • компоненты антигенов.

Какие функции выполняют в организме

Липиды составная часть почти всех тканей человеческого организма. Встречаются разные подвиды, каждый из которых отвечает за какую-то определённую функцию. Далее подробнее остановимся на том, какое значение вещества для жизнедеятельности:

  1. Энергетическая функция. Имеют свойство распадаться и в процессе появляется много энергии. Она нужна клеткам организма, чтобы поддерживать такие процессы, как поступление воздуха, формирование веществ, рост и дыхание.
  2. Резервная функция. В организме жиры откладываются про запас, именно из них состоит жировая прослойка кожи. Если наступает голод, то организм задействует эти резервы.
  3. Функция теплоизоляции. Жировая прослойка плохо проводит тепло, а потому организм гораздо легче поддерживать температуру.
  4. Структурная функция. Это относится к клеточным мембранам, потому что вещество является их постоянным компонентом.
  5. Ферментативная функция. Одна из второстепенных функций. Они помогают клетками формировать ферменты и помогают с усвоением некоторых микроэлементов, поступающих извне.
  6. Транспортная функция. Побочная и заключается в способности некоторых видов липидов переносить вещества.
  7. Сигнальная функция. Тоже является второстепенной и просто поддерживает некоторые процессы организма.
  8. Регуляторная функция. Это ещё один механизм, который имеет побочное значение. Сами по себе они почти не участвуют в регулировании разных процессов, но являются компонентом веществ, прямо влияющих на них.

Таким образом, можно с уверенностью утверждать, что функциональное значение липидов для организма переоценить сложно. Поэтому важно, чтобы их уровень всегда был в норме. Многие биологические и биохимические процессы в организме на них завязаны.

Что такое липидный обмен

Обмен липидов - это процессы физиологической или биохимической природы, которые происходят в клетках. Давайте остановимся на них подробнее:

  1. Обмен триациглицерола.
  2. Обмен фосфолипидов. Они распределяются неравномерно. Их много в печени и плазме (до 50%). Срок полупревращения 1-200 суток смотря какой вид.
  3. Обмен холестерола. Он образуется в печени и поступает с едой. Излишки выводятся естественным путём.
  4. Катаболизм жирных кислот. Происходит в ходе β-окисления, реже задействуются α-или ω-окисления.
  5. Входят в обменные процессы ЖКТ. А именно расщепление, переваривание и всасывание этих веществ, поступающих с едой. Переваривание начинается в желудке при помощи такого фермента, как липаза. Далее в кишечнике в действие вступает сок поджелудочной и жёлчь. Причиной появления сбоев может послужить нарушение секреции жёлчного пузыря или поджелудочной.
  6. Липогенез. Проще говоря - синтез жирных кислот. Происходит в печени или жировой ткани.
  7. Сюда входит транспортировка из кишечника разных жиров.
  8. Липолиз. Катаболизм, который происходит с участием липазы и провоцирует расщепление жиров.
  9. Синтез кетоновых тел. Ацетоацетил-КоА даёт начало их формированию.
  10. Взаимопревращение жирных кислот. Из жирных кислот, находящихся в печени, формируются кислоты, свойственные организму.

Липиды это важное вещество, влияющие почти на все сферы жизнедеятельности. Наиболее распространены в рационе человека триглицериды и холестерин. Триглицериды - отличный источник энергии, именно этот тип формирует жировую прослойку тела. Холестерин же влияет на обменные процессы организма, а также формирование гормонального фона. Важно чтобы содержание всегда находилось в пределах нормы, не превышая и не занижая её. Взрослому человеку необходимо употреблять 70-140 г липидов.

Липиды – сложные органические вещества, характерные для живых организмов, нерастворимые в воде, но растворимые в органических растворителях и друг в друге. В химическом отношении липиды это сборная группа органических соединений. Большинство из них это сложные эфиры многоатомных спиртов и высших жирных кислот. В виде ацильного остатка в липидах может выступать Фн.

Существует несколько классификаций липидов:

I физиологическая

а) резервные липиды или ацилглицерины депонируются в больших количествах в затем расходуются для энергетических целей организма.

б) структурные липиды – все остальные липиды, участвующие в построении клеточной мембраны.

II физико-химическая

а) нейтральные или неполярные жиры,т.е. липиды не имеющие заряда – ТАГ (триацилглицерины).

б) полярные , т.е. несущие заряд (фосфолипиды, ж.к.)

III структурная – наиболее сложная. В соответствии с ней липиды подразделяются на следующие группы.

Функции липидов

1. Структурная. Липиды являются одним из основных компонентов биологических мембран.

2. Энергетическая. При расщеплении 1г. жира выделяется ≈39 кДж энергии, т.е. в 2 раза больше, чем при распаде 1 г. углеводов.

3. Запасная. В виде ацилглицеридов депонируется метаболическое топливо.

4. Защитная. Жировая прослойка предохраняет тело и органы животных от механических повреждений.

5. Регуляторная. Например простагаландины повышая секрецию цАМФ стимулируют образование и секрецию гормонов.

6. Липиды, важные компоненты нервной клетки , участвуют в передаче нервного импульса, создании межклеточных контактов.

Жирные кислоты (ЖК ) – это алифатические монокарбоновые кислоты. Подразделяются на:

Насыщенные (нет двойных связей)

Мононенасыщенные (одна двойная связь)

Полиненасыщенные (две и более двойных связей)

Все они содержат четное число углеродных атомов, главным образом от 12 до 24. Среди них преобладают кислоты, имеющие С16 и С18 (пальмитиновая, стеариновая, олеиновая и линолевая). Растворимость ЖК возрастает с увеличением числа углеродных атомов. Ненасыщенные жирные кислоты человека и животных, участвующие в построении липидов, обычно содержат двойную связь между 9-м и 10-м атомамиуглеводородов.

В полиненасыщенных ЖК расположение двойных связей может быть:

кумулированное – С = С = С –

сопряженное – С = С – С = С –

изолированное – С = С – С – С = С –

Нумерацию углеродных атомов в жирно-кислотной цепи начинают с атома углерода карбоксильной группы. Примерно 3/4 всех жирных кислот являются непредельными (ненасыщенными), т.е. содержат двойные связи.

В соответствии с систематической номенклатурой количество и положение двойных связей в ненасыщенных жирных кислотах часто обозначают с помощью цифровых символов.

например , олеиновую кислоту как 18:1 (9) линолевую кислоту как 18:2 (9,12)


число углеродных атомов, число двойных связей, номера ближайших к карбоксилу углеродных атомов, вовлеченных в образование двойной связи.

ЖК по своему стрению являются амфипатическими , т.е. имеют полярную «голову» СОО- (обращена к воде) и неполярный «хвост» (углеводородная цепь).

Натриевые и калиевые соли ЖК называют мылами . В водных растворах они существуют в виде мицелл (суспензий). Структура мицелл такова, что их гидрофобное ядро (жирные кислоты, моноглицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель.

Нейтральные жиры . В соответствии с рекомендацией Международной номенклатурной комиссии их называют ацилглицеринами (а не глицеридами , как раньше)

Ацилглицерины (нейтральные жиры) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Если жирными кислотами этерифицированы все три гидроксильные группы глицерина, то такое соединение называют триглицеридом (триацилглицерол, ТАГ ), если две – диглицеридом (диацилглицерол, ДАГ) и если этерифицирована одна группа – моноглицеридом (моноацилглицерол, МАГ):

Если ацильные радикалы R1, R2 и R3 одинаковы, то ТАГ называют простыми (трипальмитин), если различные, то смешанными (пальмитостеаролеин).

Жирные кислоты, входящие в состав триглицеридов, определяют их физико-химические свойства. Так, температура плавления триглицеридов повышается с увеличением числа и длины остатков насыщенных жирных кислот. Напротив, чем выше содержание ненасыщенных жирных кислот, или кислот с короткой цепью, тем ниже точка плавления.

Животные жиры (сало) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.) благодаря чему при комнатной температуре они твердые .

Жиры, в состав которых входит много ненасыщенных кислот, при обычной температуре жидкие и называются маслами . Так, в конопляном масле 95% всех жирных кислот приходится на долю олеиновой, линолевой и линоленовой кислот и только 5% – на долю стеариновой и пальмитиновой кислот. В жире человека, плавящемся при температуре 15°С (при температуре тела он жидкий), содержится 70% олеиновой кислоты.

Фосфолипиды это сложные эфиры многоатомных спиртов глицерина или сфингозина с высшими жирными кислотами и фосфорной кислотой . В зависимости от того, какой многоатомный спирт участвует в образовании фосфолипида (глицерин или сфингозин), последние делят на: 1. глицерофосфолипиды

Сфингофосфолипиды.

1. Глицерофосфолипиды - производные фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения.

R1и R2– радикалы высших жирных кислот, a R3–радикал азотистого соединения или инозитол.

а) в зависимости от характера R3 глицерофосфолипиды подразделяют на

Фосфатидилхолины (лецитины),

Фосфатидилэтаноламины (кефалины)

Фосфатидилсерины

Фосфатидилинозитолы

б) ацетальфосфатиды – R1 – представлен не жирной кислотой, а альдегидом жирной кислоты, называются плазмологены.

в) в структуре имеются 3 молекулы глицерина

Фосфолипиды являются главными липидными компонентами мембран клеток, в животном организме найдены в мозге, печени и легких. При гидролизе некоторых фосфолипидов под действием особых ферментовсодержащихся, например, в яде кобры, отщепляетя R1 и образуется соединение, обладающее сильным гемолитическим действием.

2. Сфинголипиды находятся в мембранах животных и растительных клеток. Главный представитель сфингомиелин . Особенно богата ими нервная ткань. Вместо глицерина сфинголипиды содержат двухатомный ненасыщенный спирт сфингозин .

Гликолипиды – это сложные липиды, содержащие нелипидный компонент – остаток сахара.

а) Цереброзиды – главные сфинголипиды мозга и других нервных тканей, содержат D-галактозу.

б) Ганглиозиды (содержат сложный олигосахарид) в больших количествах находятся в нервной ткани, в сером веществе мозга.

Воска – сложные эфиры высших жирных кислот и высших одноатомных или двухатомных спиртов содержащих ≈ 50% различных примесей.

Природные воска (например, пчелиный воск, спермацет, ланолин ) обычно содержат, кроме указанных сложных эфиров, некоторое количество свободных жирных кислот, спиртов и углеводородов.

Стериды (стероиды) – сложные эфиры циклических спиртов (стеролов или стеринов) и высших жирных кислот. К стероидам относятся:

1. гормоны коркового вещества надпочечников,

2. желчные кислоты,

3. витамины группы D,

4.сердечные гликозиды и др.

Все стероиды в своей структуре имеют ядро (стеран), образованное гидрированным фенантреном (кольца А, В и С) и циклопентаном (кольцо D):

В организме человека важное место среди стероидов занимают стерины (стеролы), т.е. стероидные спирты. Главным представителем стеринов является холестерин (холестерол).

Каждая клетка в организме млекопитающих содержит холестерин, который обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов. Холестерин – источник образования желчных кислот, стероидных гормонов (половых и кортикоидных), а продукт его окисления –7-дегидрохолестерин, под действием УФ-лучей в коже превращается в витамин D3.

Желчные кислоты - конечный продукт метаболизма холестерина.

Желчные кислоты являются производными холановой кислоты:

В желчи человека в основном содержатся: 1. холевая (3,7,12-триоксихолановая),

2. дезоксихолевая (3,12-диоксихолановая)

и ее конъюгаты: 1. с глицином (гликохолевая)

2. с таурином (таурохолевая)

Функции желчных кислот

1) эмульгирующая

2) активирование липолитических ферментов

3) транспортная, так как, образуя комплекс с жирной кислотойпомогают их всасыванию в кишечнике.

Соли желчных кислот являются амфифильными (голова имеет «-» заряд, хвост 0 заряд), резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

В просвет кишечника поджелудочной железой выделяется зимоген – пролипаза .

Активная липаза в присутствии желчных кислот и специфического белка колипазы , присоединяется к ТАГ и катализирует гидролитическое отщепление 1-го или 2-го крайних жирнокислых остатков. Кишечная липаза действует на ТАГ (на ДАГ, МАГ нет).

Т.о. основные продукты расшепления нейтральных жиров в кишечнике это глицерин, жирная кислота и моноглицериды.

Гидролиз сложных липидов происходит под действием специфических липаз на составные части. Тонкоэмульгированные жиры частично могут всасываться через стенки кишечника без предварительного гидролиза. Основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицериды и глицерин.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама