THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Среднее общее образование

ЕГЭ-2018 по физике: задание 29

Предлагаем вашему вниманию разбор 29 задания ЕГЭ-2018 по физике. Мы подготовили пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ.

Задание 29

Деревянный шар привязан нитью ко дну цилиндрического сосуда с площадью дна S = 100 см 2 . В сосуд наливают воду так, что шар полностью погружается в жидкость, при этом нить натягивается и действует на шар с силой T . Если нить перерезать, то шар всплывёт, а уровень воды изменится на h = 5 см. Найдите силу натяжения нити T .

Решение

Рис. 1

Рис. 2

Первоначально деревянный шар привязан нитью ко дну цилиндрического сосуда площадью дна S = 100 см 2 = 0,01 м 2 и полностью погружен в воду. На шар действуют три силы: сила тяжести со стороны Земли, – сила Архимеда со стороны жидкости, – сила натяжения нити, результат взаимодействия шара и нити. По условию равновесия шара в первом случае геометрическая сумма всех действующих на шарик сил, должна быть равна нулю:

В книге содержатся материалы для успешной сдачи ЕГЭ по физике: краткие теоретические сведения по всем темам, задания разных типов и уровней сложности, решение задач повышенного уровня сложности, ответы и критерии оценивания. Учащимся не придется искать дополнительную информацию в интернете и покупать другие пособия. В данной книге они найдут все необходимое для самостоятельной и эффективной подготовки к экзамену. Издание содержит задания разных типов по всем темам, проверяемым на ЕГЭ по физике, а также решение задач повышенного уровня сложности.

Выберем координатную ось OY и направим ее вверх. Тогда с учетом проекции уравнение (1) запишем:

F a 1 = T + mg (2).

Распишем силу Архимеда:

F a 1 = ρ · V 1 g (3),

где V 1 – объем части шара погруженной в воду, в первом это объем всего шара, m – масса шара, ρ – плотность воды. Условие равновесия во втором случае

F a 2 = mg (4)

Распишем силу Архимеда в этом случае:

F a 2 = ρ · V 2 g (5),

где V 2 – объем части шара, погруженной в жидкость во втором случае.

Поработаем с уравнениями (2) и (4) . Можно использовать метод подстановки или вычесть из (2) – (4), тогда F a 1 – F a 2 = T , используя формулы (3) и (5) получим ρ · V 1 g ρ · V 2 g = T ;

ρg (V 1 V 2) = T (6)

Учитывая, что

V 1 V 2 = S ·h (7),

где h = H 1 – H 2 ; получим

T = ρ · g · S · h (8)

Подставим числовые значения

Равновесие механической системы (абсолютно твердого тела)

Равновесие механической системы - это состояние, при котором все точки механической системы находятся в покое по отношению к рассматриваемой системе отсчета. Если система отсчета инерциальна, равновесие называется абсолютным, если неинерциальна - относительным.

Для нахождения условий равновесия абсолютно твердого тела необходимо мысленно разбить его на большое число достаточно малых элементов, каждый из которых можно представить материальной точкой. Все эти элементы взаимодействуют между собой - эти силы взаимодействия называются внутренними. Помимо этого на ряд точек тела могут действовать внешние силы.

Согласно второму закону Ньютона, чтобы ускорение точки равнялось нулю (а ускорение покоящейся точки равно нулю), геометрическая сумма сил, действующих на эту точку, должна быть равна нулю. Если тело находится в покое, значит, все его точки (элементы) также находятся в покое. Следовательно, для любой точки тела можно записать:

${F_i}↖{→}+{F"_i}↖{→}=0$,

где ${F_i}↖{→}+{F"_i}↖{→}$ - геометрическая сумма всех внешних и внутренних сил, действующих на $i$-й элемент тела.

Уравнение означает, что для равновесия тела необходимо и достаточно, чтобы геометрическая сумма всех сил, действующих на любой элемент этого тела, была равна нулю.

Из уравнения легко получить первое условие равновесия тела (системы тел). Для этого достаточно просуммировать уравнение по всем элементам тела:

$∑{F_i}↖{→}+∑{F"_i}↖{→}=0$.

Вторая сумма равна нулю согласно третьему закону Ньютона: векторная сумма всех внутренних сил системы равна нулю, т. к. любой внутренней силе соответствует сила, равная по модулю и противоположная по направлению.

Следовательно,

$∑{F_i}↖{→}=0$

Первым условием равновесия твердого тела (системы тел) является равенство нулю геометрической суммы всех внешних сил, приложенных к телу.

Это условие является необходимым, но не достаточным. В этом легко убедиться, вспомнив о вращающем действии пары сил, геометрическая сумма которых тоже равна нулю.

Вторым условием равновесия твердого тела является равенство нулю суммы моментов всех внешних сил, действующих на тело, относительно любой оси.

Таким образом, условия равновесия твердого тела в случае произвольного числа внешних сил выглядят так:

$∑{F_i}↖{→}=0;∑M_k=0$

Закон Паскаля

Гидростатика (от греч. hydor - вода и statos - стоящий) - один из подразделов механики, изучающий равновесие жидкости, а также равновесие твердых тел, частично или полностью погруженных в жидкость.

Закон Паскаля - основной закон гидростатики, согласно которому давление на поверхность жидкости, произведенное внешними силами, передается жидкостью одинаково во всех направлениях.

Этот закон был открыт французским ученым Б. Паскалем в 1653 г. и опубликован в 1663 г.

Чтобы убедиться в справедливости закона Паскаля, достаточно проделать простой опыт. Присоединим к трубке с поршнем полый шар со множеством маленьких отверстий. Наполнив шар водой, нажмем на поршень, чтобы увеличить в нем давление. Вода начнет выливаться, но не только через то отверстие, которое находится на линии действия прилагаемой нами силы, а и через все остальные тоже. Причем напор воды, обусловленный внешним давлением, во всех появившихся струйках будет одинаковым.

Аналогичный результат мы получим в том случае, если вместо воды будем использовать дым. Таким образом, закон Паскаля справедлив не только для жидкостей, но и для газов.

Жидкости и газы передают оказываемое на них давление по всем направлениям одинаково.

Передача давления жидкостями и газами во всех направлениях одновременно объясняется достаточно высокой подвижностью частиц, из которых они состоят.

Давление покоящейся жидкости на дно и стенки сосуда (гидростатическое давление)

Жидкости (и газы) передают по всем направлениям не только внешнее давление, но и то давление, которое существует внутри них благодаря весу собственных частей.

Давление, оказываемое покоящейся жидкостью, называется гидростатическим.

Получим формулу для расчета гидростатического давления жидкости на произвольной глубине $h$ (в окрестности точки А на рисунке).

Сила давления, действующая со стороны вышележащего узкого столба жидкости, может быть выражена двумя способами:

1) как произведение давления $р$ в основании этого столба на площадь его сечения $S$:

2) как вес того же столба жидкости, т. е. произведение массы $m$ жидкости на ускорение свободного падения:

Масса жидкости может быть выражена через ее плотность $р$ и объем $V$:

а объем - через высоту столба и площадь его поперечного сечения:

Подставляя в формулу $F=mg$ значение массы из $m=pV$ и объема из $V=Sh$, получим:

Приравнивая выражения $F=pS$ и $F=pVg=pShg$ для силы давления, получим:

Разделив обе части последнего равенства на площадь $S$, найдем давление жидкости на глубине $h$:

Это и есть формула гидростатического давления.

Гидростатическое давление на любой глубине внутри жидкости не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободного падения и глубины, на которой определяется давление.

Важно еще раз подчеркнуть, что по формуле гидростатического давления можно рассчитывать давление жидкости, налитой в сосуд любой формы, в том числе давление на стенки сосуда, а также давление в любой точке жидкости, направленное снизу вверх, поскольку давление на одной и той же глубине одинаково по всем направлениям.

С учетом атмосферного давления $р_0$, формула для давления покоящейся в ИСО жидкости на глубине $h$ запишется следующим образом:

Гидростатический парадокс

Гидростатический парадокс - явление, заключающееся в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления жидкости на дно сосуда.

В данном случае под словом «парадокс» понимают неожиданное явление, не соответствующее обычным представлениям.

Так, в расширяющихся кверху сосудах сила давления на дно меньше веса жидкости, а в сужающихся - больше. В цилиндрическом сосуде обе силы одинаковы. Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на разный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде.

Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости: $p=pgh$ (формула гидростатического давления ). А так как площадь дна у всех сосудов одинакова, то и сила, с которой жидкость давит на дно этих сосудов, одна и та же. Она равна весу вертикального столба $АВСD$ жидкости: $P=pghS$, здесь $S$ - площадь дна (хотя масса, а следовательно, и вес в этих сосудах различны).

Гидростатический парадокс объясняется законом Паскаля - способностью жидкости передавать давление одинаково во всех направлениях.

Из формулы гидростатического давления следует, что одно и то же количество воды, находясь в разных сосудах, может оказывать разное давление на дно. Поскольку это давление зависит от высоты столба жидкости, то в узких сосудах оно будет больше, чем в широких. Благодаря этому даже небольшим количеством воды можно создавать очень большое давление. В 1648 г. это очень убедительно продемонстрировал Б. Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, вылил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Закон Архимеда

Закон Архимеда - закон статики жидкостей и газов, согласно которому на всякое тело, погруженное в жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа) и направленная по вертикали вверх.

Этот закон был открыт древнегреческим ученым Архимедом в III в. до н. э. Свои исследования Архимед описал в трактате «О плавающих телах», который считается одним из последних его научных трудов.

Ниже приведены выводы, следующие из закона Архимеда.

Действие жидкости и газа на погруженное в них тело

Если погрузить в воду мячик, наполненный воздухом, и отпустить его, то он всплывет. То же самое произойдет со щепкой, с пробкой и многими другими телами. Какая же сила заставляет их всплывать?

На тело, погруженное в воду, со всех сторон действуют силы давления воды. В каждой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростатическое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих на тело сверху.

Если заменить все силы давления, приложенные к погруженному в воду телу, одной (результирующей или равнодействующей) силой, оказывающей на тело то же самое действие, что и все эти отдельные силы вместе, то результирующая сила будет направлена вверх. Это и заставляет тело всплывать. Эта сила называется выталкивающей силой , или архимедовой силой (по имени Архимеда, который впервые указал на ее существование и установил, от чего она зависит). На рисунке она обозначена как $F_A$.

Архимедова (выталкивающая) сила действует на тело не только в воде, но и в любой другой жидкости, т. к. в любой жидкости существует гидростатическое давление, разное на разных глубинах. Эта сила действует и в газах, благодаря чему летают воздушные шары и дирижабли.

Благодаря выталкивающей силе вес любого тела, находящегося в воде (или в любой другой жидкости), оказывается меньше, чем в воздухе, а в воздухе меньше, чем в безвоздушном пространстве. В этом легко убедиться, взвесив гирю с помощью учебного пружинного динамометра сначала в воздухе, а затем опустив ее в сосуд с водой.

Уменьшение веса происходит и при переносе тела из вакуума в воздух (или какой-либо другой газ).

Если вес тела в вакууме (например, в сосуде, из которого откачан воздух) равен $Р_0$, то его вес в воздухе равен:

$P_{возд}=P_0-F"_A,$

где $F"_A$ - архимедова сила, действующая на данное тело в воздухе. Для большинства тел эта сила ничтожно мала и ею можно пренебречь, т. е. можно считать, что $P_{возд}=P_0=mg$.

Вес тела в жидкости уменьшается значительно сильнее, чем в воздухе. Если вес тела в воздухе $P_{возд}=P_0$, то вес тела в жидкости равен $Р_{жидк}= Р_0 - F_A$. Здесь $F_A$ - архимедова сила, действующая в жидкости. Отсюда следует, что

$F_A=P_0-P_{жидк}$

Поэтому чтобы найти архимедову силу, действующую на тело в какой-либо жидкости, нужно это тело взвесить в воздухе и в жидкости. Разность полученных значений и будет архимедовой (выталкивающей) силой.

Другими словами, учитывая формулу $F_A=P_0-P_{жидк}$, можно сказать:

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.

Определить архимедову силу можно также теоретически. Для этого предположим, что тело, погруженное в жидкость, состоит из той же жидкости, в которую оно погружено. Мы имеем право это предположить, так как силы давления, действующие на тело, погруженное в жидкость, не зависят от вещества, из которого оно сделано. Тогда приложенная к такому телу архимедова сила $F_A$ будет уравновешена действующей вниз силой тяжести $m_{ж}g$ (где $m_{ж}$ - масса жидкости в объеме данного тела):

Но сила тяжести $m_{ж}g$ равна весу вытесненной жидкости $Р_ж$, Таким образом,

Учитывая, что масса жидкости равна произведению ее плотности $р_ж$ на объем, формулу $F_{A}=m_{ж}g$ можно записать в виде:

$F_A=p_{ж}V_{ж}g$

где $V_ж$ - объем вытесненной жидкости. Этот объем равен объему той части тела, которая погружена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом $V$ всего тела; если же тело погружено в жидкость частично, то объем $V_ж$ вытесненной жидкости меньше объема $V$ тела.

Формула $F_{A}=m_{ж}g$ справедлива и для архимедовой силы, действующей в газе. Только в этом случае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.

С учетом вышеизложенного закон Архимеда можно сформулировать так:

На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или газа), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).

Свободные колебания математического и пружинного маятников

Свободные колебания (или собственные колебания) - это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинетической) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая называется колебательной системой.

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины, входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник . В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия. Силы, действующие между телами колебательной системы, называются внутренними силами. Внешними силами называются силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свободные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

  1. возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;
  2. отсутствие трения в системе.

Динамика свободных колебаний

Колебания тела под действием сил упругости. Уравнение колебательного движения тела под действием силы упругости $F_{упр}$ может быть получено с учетом второго закона Ньютона ($F=ma$) и закона Гука ($F_{упр}=-kx$), где $m$ - масса шарика, $а$ - ускорение, приобретаемое шариком под действием силы упругости, $k$ - коэффициент жесткости пружины, $х$ - смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось $Ох$). Приравнивая правые части этих уравнений и учитывая, что ускорение $а$ - это вторая производная от координаты $х$ (смещения), получим:

Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени {ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.

Колебания математического маятника. Для получения уравнения колебания математического маятника необходимо разложить силу тяжести $F_т=mg$ на нормальную $F_n$ (направленную вдоль нити) и тангенциальную $F_τ$ (касательную к траектории движения шарика - окружности) составляющие. Нормальная составляющая силы тяжести $F_n$ и сила упругости нити $F_{упр}$ в сумме сообщают маятнику центростремительное ускорение, не влияющее на величину скорости, а лишь меняющее ее направление, а тангенциальная составляющая $F_τ$ является той силой, которая возвращает шарик в положение равновесия и заставляет его совершать колебательные движения. Используя, как и в предыдущем случае, закон Ньютона для тангенциального ускорения - $ma_τ=F_τ$ и учитывая, что $F_τ=-mgsinα$, получим:

Знак минус появился потому, что сила и угол отклонения от положения равновесия $α$ имеют противоположные знаки. Для малых углов отклонения $sinα≈α$. В свою очередь, $α={s}/{l}$, где $s$ - дуга $ОА$, $l$ - длина нити. Учитывая, что $a_τ=s""$, окончательно получим:

Вид уравнения $s""={g}/{l}s$ аналогичен уравнению $x""=-{k}/{m}x$. Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).

Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.

Решением уравнений $x""=-{k}/{m}x$ и $s""={g}/{l}s$ является функция вида:

$x=x_{m}cosω_{0}t$(или $x=x_{m}sinω_{0}t$)

То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими.

В уравнении $x=x_{m}cosω_{0}t$ хт- амплитуда колебания, $ω_{0}$ - собственная циклическая (круговая) частота колебаний.

Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:

$ω_0=√{{k}/{m}}; T=2π√{{m}/{k}}$

Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.

Для математического маятника выполняются равенства:

$ω_0=√{{g}/{l}}; T=2π√{{l}/{g}}$

Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).

Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.

Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятника, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.

Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции $x=x_{m}cosω_{0}t$, получим выражение для скорости:

$x"=υ=-x_{m}·sinω_{0}t=υ_{m}cos(ω_{0}t+{π}/{2})$

где $υ_{m}$ - амплитуда скорости.

Аналогично выражение для ускорения а получим, дифференцируя $x"=υ=-x_{m}·sinω_{0}t=υ_{m}cos(ω_{0}t+{π}/{2})$:

$a=x""=υ"-x_{m}ω_0^{2}cosω_{0}t=a_{m}·cos(ω_{0}t+π)$

где $a_m$ - амплитуда ускорения. Таким образом, из полученных уравнений следует, что амплитуда скорости гармонических колебаний пропорциональна частоте, а амплитуда ускорения - квадрату частоты колебания:

$υ_{m}=ω_{0}x_m; a_m=ω_0^{2}x_m$

Фаза колебаний

Фаза колебаний - это аргумент периодически изменяющейся функции, описывающей колебательный или волновой процесс.

Для гармонических колебаний

$X(t)=Acos(ωt+φ_0)$

где $φ=ωt+φ_0$ - фаза колебания, $А$ - амплитуда, $ω$ - круговая частота, $t$ - время, $φ_0$ - начальная (фиксированная) фаза колебания: в момент времени $t=0$ $φ=φ_0$. Фаза выражается в радианах .

Фаза гармонического колебания при постоянной амплитуде определяет не только координату колеблющегося тела в любой момент времени, но и скорость и ускорение, которые тоже изменяются по гармоническому закону (скорость и ускорение гармонических колебаний - это первая и вторая производные по времени функции $X(t)=Acos(ωt+φ_0)$, которые, как известно, снова дают синус и косинус). Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени.

Два колебания с одинаковыми амплитудами и частотами могут отличаться друг от друга фазами. Так как $ω={2π}/{T}$, то

$φ-φ_0=ωt={2πt}/{T}$

Отношение ${t}/{T}$ показывает, какая часть периода прошла от момента начала колебаний. Любому значению времени, выраженному в долях периода, соответствует значение фазы, выраженной в радианах. Сплошная кривая - это зависимость координаты от времени и одновременно от фазы колебаний (верхние и нижние значения на оси абсцисс соответственно) для точки, совершающей гармонические колебания по закону:

$x=x_{m}cosω_{0}t$

Здесь начальная фаза равна нулю $φ_0=0$. В начальный момент времени амплитуда максимальна. Это соответствует случаю колебаний тела, прикрепленного к пружине (или маятника), которое в начальный момент времени отвели от положения равновесия и отпустили. Описание колебаний, начинающихся из положения равновесия (например, при кратковременном толчке покоящегося шарика), удобнее вести с помощью функции синуса:

Как известно, $cosφ=sin(φ+{π}/{2})$, поэтому колебания, описываемые уравнениями $x=x_{m}cosω_{0}t$ и $x=sinω_{0}t$, отличаются друг от друга только фазами. Разность фаз, или сдвиг фаз, составляет ${π}/{2}$. Чтобы определить сдвиг фаз, нужно колеблющуюся величину выразить через одну и ту же тригонометрическую функцию - косинус или синус. Пунктирная кривая сдвинута относительно сплошной на ${π}/{2}$.

Сравнивая уравнения свободных колебаний, координаты, скорости и ускорения материальной точки, находим, что колебания скорости опережают по фазе на ${π}/{2}$, а колебания ускорения - на $π$ колебания смещения (координаты).

Затухающие колебания

Затухание колебаний - это уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Свободные колебания всегда являются затухающими колебаниями.

Потери энергии колебаний в механических системах связаны с превращением ее в теплоту вследствие трения и сопротивления окружающей среды.

Так, механическая энергия колебаний маятника расходуется на преодоление сил трения и сопротивления воздуха, переходя при этом во внутреннюю энергию.

Амплитуда колебаний постепенно уменьшается, и через некоторое время колебания прекращаются. Такие колебания называются затухающими.

Чем больше силы сопротивления движению, тем быстрее прекращаются колебания. Например, в воде колебания прекращаются быстрее, чем в воздухе.

Упругие волны (механические волны)

Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называют волнами.

Упругие волны - это возмущения, распространяющиеся в твердой, жидкой и газообразной средах благодаря действию в них сил упругости.

Сами эти среды называют упругими . Возмущение упругой среды - это любое отклонение частиц этой среды от своего положения равновесия.

Возьмем, например, длинную веревку (или резиновую трубку) и прикрепим один из ее концов к стене. Туго натянув веревку, резким боковым движением руки создадим на ее незакрепленном конце кратковременное возмущение. Мы увидим, что это возмущение побежит вдоль веревки и, дойдя до стены, отразится назад.

Начальное возмущение среды, приводящее к появлению в ней волны, вызывается действием в ней какого-нибудь инородного тела, которое называют источником волны . Это может быть рука человека, ударившего по веревке, камешек, упавший в воду, и т. д.

Если действие источника носит кратковременный характер, то в среде возникает так называемая одиночная волна . Если же источник волны совершает длительное колебательное движение, то волны в среде начинают идти одна за другой. Подобную картину можно увидеть, поместив над ванной с водой вибрирующую пластину, имеющую наконечник, опущенный в воду.

Необходимым условием возникновения упругой волны является появление в момент возникновения возмущения сил упругости, препятствующих этому возмущению. Эти силы стремятся сблизить соседние частицы среды, если они расходятся, и отдалить их, когда они сближаются. Действуя на все более удаленные от источника частицы среды, силы упругости начинают выводить их из положения равновесия. Постепенно все частицы среды одна за другой вовлекаются в колебательное движение. Распространение этих колебаний и проявляется в виде волны.

В любой упругой среде одновременно существуют два вида движения: колебания частиц среды и распространение возмущения. Волна, в которой частицы среды колеблются вдоль направления ее распространения, называется продольной , а волна, в которой частицы среды колеблются поперек направления ее распространения, называется поперечной.

Продольная волна

Волна, в которой колебания происходят вдоль направления распространения волны, называется продольной.

В упругой продольной волне возмущения представляют собой сжатия и разрежения среды. Деформация сжатия сопровождается возникновением сил упругости в любой среде. Поэтому продольные волны могут распространяться во всех средах (и в жидких, и в твердых, и в газообразных).

Пример распространения продольной упругой волны изображен на рисунке. По левому концу длинной пружины, подвешенной на нитях, ударяют рукой. От удара несколько витков сближаются, возникает сила упругости, под действием которой эти витки начинают расходиться. Продолжая движение по инерции, они будут продолжать расходиться, минуя положение равновесия и образуя в этом месте разрежение. При ритмичном воздействии витки на конце пружины будут то сближаться, то отходить друг от друга, т. е. колебаться возле своего положения равновесия. Эти колебания постепенно передадутся от витка к витку вдоль всей пружины. По пружине распространятся сгущения и разрежения витков, или упругая волна.

Поперечная волна

Волны, в которых колебания происходят перпендикулярно направлению их распространения, называются поперечными.

В поперечной упругой волне возмущения представляют собой смещения (сдвиги) одних слоев среды относительно других. Деформация сдвига приводит к появлению сил упругости только в твердых телах: сдвиг слоев в газах и жидкостях возникновением сил упругости не сопровождается. Поэтому поперечные волны могут распространяться только в твердых телах.

Плоская волна

Плоская волна - это волна, у которой направление распространения одинаково во всех точках пространства.

В такой волне амплитуда не меняется со временем (по мере удаления от источника). Получить такую волну можно, если большую пластину, находящуюся в сплошной однородной упругой среде, заставить колебаться перпендикулярно плоскости. Тогда все точки среды, примыкающей к пластине, будут колебаться с одинаковыми амплитудами и одинаковыми фазами. Распространяться эти колебания будут в виде волн в направлении нормали к пластине, причем все частицы среды, лежащие в плоскостях, параллельных пластине, будут колебаться с одинаковыми фазами.

Геометрическое место точек, в которых фаза колебаний имеет одно и то же значение, называется волновой поверхностью , или фронтом волны.

С этой точки зрения плоской волне можно дать и следующее определение.

Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.

Линия, нормальная к волновой поверхности, называется лучом . Вдоль лучей происходит перенос энергии волны. Для плоских волн лучи - это параллельные прямые.

Уравнение плоской синусоидальной волны имеет вид:

$s=s_{m}sin[ω(t-{x}/{υ})+φ_0]$

где $s$ - смещение колеблющейся точки, $s_m$ - амплитуда колебаний, $ω$ - циклическая частота, $t$ - время, $х$ - текущая координата, $υ$ - скорость распространения колебаний или скорость волны, $φ_0$ - начальная фаза колебаний.

Сферическая волна

Сферической называется волна, волновые поверхности которой имеют вид концентрических сфер. Центр этих сфер называется центром волны.

Лучи в такой волне направлены вдоль радиусов, расходящихся от центра волны. На рисунке источником волны является пульсирующая сфера.

Амплитуда колебаний частиц в сферической волне обязательно убывает по мере удаления от источника. Энергия, излучаемая источником, равномерно распределяется по поверхности сферы, радиус которой непрерывно увеличивается по мере распространения волны. Уравнение сферической волны имеет вид:

$s={a_0}/{r}sin[ω(t-{r}/{υ})+φ_0]$

В отличие от плоской волны, где $s_m=A$ - амплитуда волны постоянная величина, в сферической волне она убывает с расстоянием от центра волны.

Длина и скорость волны

Любая волна распространяется с некоторой скоростью. Под скоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около $5$ км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

где $υ$ - скорость волны, $Т$ - период колебаний в волне, $λ$ (греческая буква лямбда) - длина волны.

Формула $λ=υT$ выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте $v$, т. е. $T={1}/{v}$, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

$λ=υT=υ{1}/{v}$

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Длина волны - это пространственный период волны . На графике волны длина волны определяется как расстояние между двумя ближайшими точками гармонической бегущей волны , находящимися в одинаковой фазе колебаний. Рисунок - это как бы мгновенные фотографии волн в колеблющейся упругой среде в моменты времени $t$ и $t+∆t$. Ось $х$ совпадает с направлением распространения волны, на оси ординат отложены смещения $s$ колеблющихся частиц среды.

Частота колебаний в волне совпадает с частотой колебаний источника, т. к. колебания частиц в среде являются вынужденными и не зависят от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

Интерференция и дифракция волн

Интерференция волн (от лат. inter - взаимно, между собой и ferio - ударяю, поражаю) - взаимное усиление или ослабление двух (или большего числа) волн при их наложении друг на друга при одновременном распространении в пространстве.

Обычно под интерференционным эффектом понимают тот факт, что результирующая интенсивность в одних точках пространства получается больше, в других - меньше суммарной интенсивности волн.

Интерференция волн - одно из основных свойств волн любой природы: упругих, электромагнитных, в том числе и световых, и др.

Интерференция механических волн

Сложение механических волн - их взаимное наложение - проще всего наблюдать на поверхности воды. Если возбудить две волны, бросив в воду два камня, то каждая из этих волн ведет себя так, как будто другой волны не существует. Аналогично ведут себя звуковые волны от разных независимых источников. В каждой точке среды колебания, вызванные волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраическую сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Если одновременно в двух точках $О_1$ и $O_2$ возбудить в воде две когерентные гармонические волны, то будут наблюдаться гребни и впадины на поверхности воды, не меняющиеся со временем, т. е. возникнет интерференция.

Условием возникновения максимума интенсивности в некоторой точке $М$, находящейся на расстояниях $d_1$ и $d_2$ от источников волн $О_1$ и $О_2$, расстояние между которыми $l << d_1$ и $l << d_2$, будет:

где $k = 0,1,2,...$,а $λ$ - длина волны.

Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн и при условии, что фазы колебаний двух источников совпадают.

Под разностью хода $∆d$ здесь понимают геометрическую разность путей, которые проходят волны от двух источников до рассматриваемой точки: $∆d=d_2-d_1$. При разности хода $∆d=kλ$ разность фаз двух волн равна четному числу $π$, и амплитуды колебаний будут складываться.

Условием минимума является:

$∆d=(2k+1){λ}/{2}$

Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн и при условии, что фазы колебаний двух источников совпадают.

Разность фаз волн в этом случае равна нечетному числу $π$, т. е. колебания происходят в противофазе, следовательно, гасятся; амплитуда результирующего колебания равна нулю.

Распределение энергии при интерференции

Вследствие интерференции происходит перераспределение энергии в пространстве. Она концентрируется в максимумах за счет того, что в минимумы не поступает совсем.

Дифракция волн

Дифракция волн (от лат. diffractus - разломанный) - в первоначальном узком смысле - огибание волнами препятствий, в современном - более широком - любые отклонения при распространении волн от законов геометрической оптики.

Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней.

Способность волн огибать препятствия можно наблюдать на морских волнах, легко огибающих камень, размеры которого малы по сравнению с длиной волны. Звуковые волны также способны огибать препятствия, благодаря чему мы слышим, например, сигнал машины, находящейся за углом дома.

Явление дифракции волн на поверхности воды можно наблюдать, если поставить на пути волн экран с узкой щелью, размеры которой меньше длины волны. За экраном распространяется круговая волна, как если бы в отверстии экрана располагалось колеблющееся тело - источник волн. Согласно принципу Гюйгенса-Френеля, так и должно быть. Вторичные источники в узкой щели располагаются столь близко друг к другу, что их можно рассматривать как один точечный источник.

Если размеры щели велики по сравнению с длиной волны, то волна проходит сквозь щель, почти не меняя своей формы, лишь по краям видны еле заметные искривления волновой поверхности, благодаря которым волна проникает и в пространство за экраном.

Звук (звуковые волны)

Звук (или звуковые волны) - это распространяющиеся в виде волн колебательные движения частиц упругой среды: газообразной, жидкой или твердой.

Под словом «звук» понимают также ощущения, вызываемые действием звуковых волн на специальный орган чувств (орган слуха или, проще говоря, ухо) человека и животных: человек слышит звук частотой от $16$ Гц до $20$ кГц. Частоты этого диапазона называют звуковыми.

Итак, физическое понятие звука подразумевает упругие волны не только тех частот, которые человек слышит, но также более низкие и более высокие частоты. Первые называются инфразвуком , вторые-ультразвуком . Самые высокочастотные упругие волны в диапазоне $10^{9} - 10^{13}$ Гц относятся к гиперзвуку.

«Услышать» звуковые волны можно, заставив дрожать зажатую в тисках длинную стальную линейку. Однако если над тисками будет выступать большая часть линейки, то, вызвав ее колебания, мы не услышим порождаемые ею волны. Но если укоротить выступающую часть линейки и тем самым увеличить частоту ее колебаний, то линейка начнет звучать.

Источники звука

Любое тело, колеблющееся со звуковой частотой, является источником звука, так как в окружающей среде возникают распространяющиеся от него волны.

Существуют как естественные, так и искусственные источники звука. Один из искусственных источников звука, камертон, был изобретен в 1711 г. английским музыкантом Дж. Шором для настройки музыкальных инструментов.

Камертон представляет собой изогнутый (в виде двух ветвей) металлический стержень с держателем посередине. Ударив резиновым молоточком по одной из ветвей камертона, мы услышим определенный звук. Ветви камертона начинают вибрировать, создавая вокруг себя попеременные сжатия и разрежения воздуха. Распространяясь по воздуху, эти возмущения образуют звуковую волну.

Стандартная частота колебаний камертона - $440$ Гц. Это означает, что за $1$с его ветви совершают $440$ колебаний. На глаз они незаметны. Если, однако, прикоснуться к звучащему камертону рукой, то можно почувствовать его вибрацию. Для определения характера колебаний камертона к одной из его ветвей следует прикрепить иглу. Заставив камертон звучать, проведем соединенной с ним иглой по поверхности закопченной стеклянной пластинки. На пластинке появится след в форме синусоиды.

Для усиления звука, издаваемого камертоном, его держатель укрепляют на деревянном ящике, открытом с одной стороны. Этот ящик называют резонатором . При колебаниях камертона вибрация ящика передается находящемуся в нем воздуху. Из-за резонанса, возникающего при правильно подобранных размерах ящика, амплитуда вынужденных колебаний воздуха возрастает, и звук усиливается. Его усилению способствует и увеличение площади излучающей поверхности, которое имеет место при соединении камертона с ящиком.

Нечто подобное происходит и в таких музыкальных инструментах, как гитара, скрипка. Сами по себе струны этих инструментов создают слабый звук. Громким он становится благодаря наличию у них корпуса определенной формы с отверстием, через которое могут выходить звуковые волны.

Источниками звука могут быть не только колеблющиеся твердые тела, но и некоторые явления, вызывающие колебания давления в окружающей среде (взрывы, полет пуль, завывания ветра и т. д.). Наиболее ярким примером подобных явлений является молния. Во время грозы температура в канале молнии увеличивается до $30000°$С. Давление резко возрастает, и в воздухе возникает ударная волна, постепенно переходящая в звуковые колебания (с типичной частотой $60$ Гц), распространяющиеся в виде раскатов грома.

Интересным источником звука является дисковая сирена, изобретенная немецким физиком Т. Зеебеком (1770-1831). Она представляет собой соединенный с электродвигателем диск с отверстиями, расположенными перед сильной струей воздуха. При вращении диска поток воздуха, проходящего через отверстия, периодически прерывается, в результате чего возникает резкий характерный звук. Частота этого звука определяется по формуле $v=nk$, где $n$ - частота вращения диска, $k$ - число отверстий в нем.

Используя сирену с несколькими рядами отверстий и регулируемой частотой вращения диска, можно получить звуки разной частоты. Частотный диапазон сирен, применяемых на практике, составляет обычно от $200$ Гц до $100$ кГц и выше.

Свое название эти источники звука получили по имени полуптиц-полуженщин, которые, согласно древнегреческим мифам, завлекали своим пением мореходов на кораблях, и те разбивались о прибрежные скалы.

Приемники звука

Приемники звука служат для восприятия звуковой энергии и преобразования ее в другие виды энергии. К приемникам звука относятся, в частности, слуховой аппарат человека и животных. В технике для приема звука применяют главным образом микрофоны (в воздухе), гидрофоны (в воде) и геофоны (в земной коре).

В газах и жидкостях звуковые волны распространяются в виде продольных волн сжатия и разрежения. Сжатия и разрежения среды, возникающие вследствие колебаний источника звука (колокольчика, струны, камертона, мембраны телефона, голосовых связок и т. д.), через некоторое время достигают человеческого уха, заставляя барабанную перепонку уха совершать вынужденные колебания с частотой, соответствующей частоте источника звука. Дрожания барабанной перепонки передаются посредством системы косточек окончаниям слухового нерва, раздражают их и тем вызывают у человека определенные слуховые ощущения. Животные также реагируют на упругие колебания, правда, в качестве звука они воспринимают волны других частот.

Человеческое ухо - очень чувствительный прибор. Воспринимать звук мы начинаем уже тогда, когда амплитуда колебаний частиц воздуха в волне оказывается равной всего лишь радиусу атома! С возрастом из-за потери эластичности барабанной перепонки верхняя граница воспринимаемых человеком частот постепенно снижается. Лишь молодые люди способны слышать звуки с частотой $20$ кГц. В среднем и тем более в старшем возрасте как мужчины, так и женщины перестают воспринимать звуковые волны, частота которых превышает $12-14$ кГц.

Ухудшается слух людей и в результате длительного воздействия громких звуков. Работа вблизи мощных самолетов, в очень шумных заводских цехах, частое посещение дискотек и чрезмерное увлечение аудиоплеерами негативно влияют на остроту восприятия звуков (особенно высокочастотных) и в некоторых случаях могут привести к потере слуха.

Громкость звука

Громкость звука - это субъективное качество слухового ощущения, позволяющее располагать звуки по шкале от тихих до громких.

Слуховые ощущения, которые у нас вызывают различные звуки, во многом зависят от амплитуды звуковой волны и ее частоты, которые являются физическими характеристиками звуковой волны. Этим физическим характеристикам соответствуют определенные физиологические характеристики, связанные с нашим восприятием звука.

Громкость звука определяется амплитудой: чем больше амплитуда колебаний в звуковой волне, тем больше громкость.

Так, когда колебания звучащего камертона затухают, вместе с амплитудой уменьшается и громкость звука. И наоборот, ударив по камертону сильнее и тем самым увеличив амплитуду его колебаний, мы вызовем и более громкий звук.

Громкость звука зависит также от того, насколько чувствительно наше ухо к данному звуку. Наибольшей чувствительностью человеческое ухо обладает к звуковым волнам с частотой $1-5$ кГц. Поэтому, например, высокий женский голос с частотой $1000$ Гц будет восприниматься нашим ухом как более громкий, чем низкий мужской голос с частотой $200$ Гц, даже если амплитуды колебаний голосовых связок у них одинаковы.

Громкость звука зависит также от его длительности, интенсивности и от индивидуальных особенностей слушателя.

Интенсивностью звука называется энергия, переносимая звуковой волной за $1$с через поверхность площадью $1м^2$. Оказалось, что интенсивность самых громких звуков (при которых возникает ощущение боли) превышает интенсивность самых слабых звуков, доступных восприятию человека, в $10$ триллионов раз! В этом смысле человеческое ухо оказывается намного более совершенным устройством, чем любой из обычных измерительных приборов. Ни одним из них столь широкий диапазон значений измерить невозможно (у приборов диапазон измерений редко превосходит $100$).

Единицу громкости называют соном. Громкостью в $1$ сон обладает приглушенный разговор. Тиканье часов характеризуется громкостью около $0.1$ сона, обычный разговор - $2$ сона, стук пишущей машинки - $4$ сона, громкий уличный шум - $8$ сон. В кузнечном цехе громкость достигает $64$ сон, а на расстоянии $4$ м от работающего двигателя реактивного самолета - $264$ сон. Звуки еще большей громкости начинают вызывать болевые ощущения.

Высота звука

Помимо громкости звук характеризуется высотой. Высота звука определяется его частотой: чем больше частота колебаний в звуковой волне, тем выше звук. Колебаниям небольшой частоты соответствуют низкие звуки, колебаниям большой частоты - высокие звуки.

Так, например, шмель машет своими крылышками с меньшей частотой, чем комар: у шмеля она составляет $220$ взмахов в секунду, а у комара - $500-600$. Поэтому полет шмеля сопровождается низким звуком (жужжанием), а полет комара - высоким (писком).

Звуковую волну определенной частоты иначе называют музыкальным тоном, поэтому о высоте звука часто говорят как о высоте тона.

Основной тон с примесью нескольких колебаний других частот образует музыкальный звук. Например, звуки скрипки и пианино могут включать до $15-20$ различных колебаний. От состава каждого сложного звука зависит его тембр.

Частота свободных колебаний струны зависит от ее размеров и натяжения. Поэтому, натягивая струны гитары с помощью колышков и прижимая их к грифу гитары в разных местах, мы меняем их собственную частоту, а следовательно, и высоту издаваемых ими звуков.

Характер восприятия звука во многом зависит от планировки помещения, в котором слушается речь или музыка. Объясняется это тем, что в закрытых помещениях слушатель воспринимает, кроме прямого звука, еще и слитный ряд быстро следующих друг за другом повторений, вызванных многократными отражениями звука от находящихся в помещении предметов, стен, потолка и пола.

Отражение звука

На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше.

При переходе звука из воздуха в воду $99.9%$ звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в $2$ раза больше, чем в воздухе. Слуховой аппарат рыб реагирует именно на это. Поэтому, например, крики и шумы над поверхностью воды являются верным способом распугать морских обитателей. Человека же, оказавшегося под водой, эти крики не оглушат: при погружении в воду в его ушах останутся воздушные пробки, которые и спасут его от звуковой перегрузки.

При переходе звука из воды в воздух снова отражается $99.9%$ энергии. Но если при переходе из воды в воздух звуковое давление увеличивалось, то теперь оно, наоборот, резко уменьшается. Именно по этой причине человек, находящийся над водой, не слышит звук, возникающий под водой при ударе одним камнем о другой.

Такое поведение звука на границе между водой и воздухом дало основание нашим предкам считать подводный мир «миром молчания». Отсюда же и выражение «нем как рыба». Однако еще Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться, что рыбы на самом деле довольно болтливы.

Эхо

Отражением звука объясняется и эхо. Эхо - это звуковые волны, отраженные от какого-либо препятствия (зданий, холмов, деревьев) и возвратившиеся к своему источнику. Мы слышим эхо лишь в том случае, когда отраженный звук воспринимается отдельно от произнесенного. Происходит это тогда, когда до нас доходят звуковые волны, последовательно отразившиеся от нескольких препятствий и разделенные интервалом времени $t > 50-60$ мс. Тогда возникает многократное эхо. Некоторые из таких явлений приобрели мировую известность. Так, например, скалы, расположенные в форме круга возле Адерсбаха в Чехии, в определенном месте повторяют $7$ слогов, а в замке Вудсток в Англии эхо отчетливо повторяет $17$ слогов!

Слово «эхо» связано с именем горной нимфы Эхо, которая, согласно древнегреческой мифологии, безответно была влюблена в Нарцисса. От тоски по возлюбленному Эхо высохла и окаменела так, что от нее остался лишь голос, способный повторять окончания произнесенных в ее присутствии слов.

Почему не слышно эхо в небольшой квартире? Ведь и в ней звук должен отражаться от стен, потолка, пола. Дело в том, что время $t$, за которое звук проходит расстояние, скажем, $s=6м$, распространяясь со скоростью $υ=340$ м/с, равно:

$t={s}/{υ}={6}/{340}=0.02c$

А это значительно меньше времени ($0.06$ с), необходимого, чтобы услышать эхо.

Увеличение длительности звука, вызванное его отражениями от различных препятствий, называется реверберацией . Реверберация велика в пустых помещениях, где она приводит к гулкости. И наоборот, помещения с мягкой обивкой стен, драпировками, шторами, мягкой мебелью, коврами, а также наполненные людьми хорошо поглощают звук, и потому реверберация в них незначительна.

Скорость звука

Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Известно, что во время грозы мы видим вспышку молнии и лишь через некоторое время слышим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.

Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре $20°$С она равна $343$ м/с, т. е. $1235$ км/ч. Заметим, что именно до такого значения уменьшается на расстоянии $800$ м скорость пули, вылетевшей из автомата Калашникова. Начальная скорость пули $825$ м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука в газах зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При $0°$С скорость звука в воздухе составляет $332$ м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре $0°$С скорость звука в водороде составляет $1284$ м/с, в гелии - $965$ м/с, а в кислороде - $316$ м/с.

Скорость звука в жидкостях , как правило, больше скорости звука в газах. Скорость звука в воде впервые была измеренав 1826 г. Ж. Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии. На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола, опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии $14$ км от первой. По интервалу времени между вспышкой светового сигнала и приходом звукового сигнала определили скорость звука в воде. При температуре $8°$С она оказалась равной $1440$ м/с.

Скорость звука в твердых телах больше, чем в жидкостях и газах. Если приложить ухо к рельсу, то после удара по другому концу рельса слышно два звука. Один из них достигает уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали «слухачей», которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до слуховых нервов не через воздух и наружное ухо, а через пол и кости.

Скорость звука можно определить, зная длину волны и частоту (или период) колебаний:

$υ=λv, υ={λ}/{T}$

Инфразвук

Звуковые волны с частотой, меньшей $16$ Гц, называются инфразвуком.

Инфразвуковые волны человеческое ухо не воспринимает. Несмотря на это, они способны оказывать на человека определенное физиологическое воздействие. Объясняется это действие резонансом. Внутренние органы нашего тела имеют достаточно низкие собственные частоты: брюшная полость и грудная клетка - $5-8$ Гц, голова - $20-30$ Гц. Среднее значение резонансной частоты для всего тела составляет $6$ Гц. Имея частоты того же порядка, инфразвуковые волны заставляют наши органы вибрировать и при очень большой интенсивности способны привести к внутренним кровоизлияниям.

Специальные опыты показали, что облучение людей достаточно интенсивным инфразвуком может вызвать потерю чувства равновесия, тошноту, непроизвольное вращение глазных яблоки т. д. Например, на частоте $4-8$ Гц человек ощущает перемещение внутренних органов, а на частоте $12$ Гц - приступ морской болезни.

Рассказывают, что однажды американский физик Р. Вуд (прослывший среди коллег большим оригиналом и весельчаком) принес в театр специальный аппарат, излучающий инфразвуковые волны, и, включив его, направил на сцену. Никакого звука никто не услышал, однако с актрисой случилась истерика.

Резонансным влиянием на человеческий организм низкочастотных звуков объясняется и возбуждающее действие современной рок-музыки, насыщенной многократно усиленными низкими частотами барабанов, бас-гитар.

Инфразвук не воспринимается человеческим ухом, однако его способны слышать некоторые животные. Например, медузы уверенно воспринимают инфразвуковые волны с частотой $8-13$ Гц, возникающие при шторме в результате взаимодействия потоков воздуха с гребнями морских волн. Достигая медуз, эти волны заранее (за $15$ часов!) «предупреждают» о приближающемся шторме.

Источниками инфразвука могут служить грозовые разряды, выстрелы, извержения вулканов, работающие двигатели реактивных самолетов, ветер, обтекающий гребни морских волн, и т. д. Для инфразвука характерно малое поглощение в различных средах, вследствие чего он может распространяться на очень большие расстояния. Это позволяет определить места сильных взрывов, положение стреляющего орудия, осуществлять контроль за подземными ядерными взрывами, предсказывать цунами и т. д.

Ультразвук

Упругие волны с частотой выше $20$ кГц называются ультразвуком.

Ультразвук в животном мире . Ультразвук, как и инфразвук, не воспринимается человеческим ухом, однако его способны излучать и воспринимать некоторые животные. Так, например, дельфины благодаря этому уверенно ориентируются в мутной воде. Посылая и принимая возвратившиеся назад ультразвуковые импульсы, они способны на расстоянии $20-30$ м обнаружить даже маленькую дробинку, осторожно опущенную в воду. Ультразвук помогает и летучим мышам, которые плохо видят или вообще ничего не видят. Издавая с помощью своего слухового аппарата ультразвуковые волны (до $250$ раз в секунду), они способны ориентироваться в полете и успешно ловить добычу даже в темноте. Любопытно, что у некоторых насекомых в ответ на это выработалась особая защитная реакция: отдельные виды ночных бабочек и жуков тоже оказались способными воспринимать ультразвуки, издаваемые летучими мышами, и, услышав их, они тут же складывают крылья, падают вниз и замирают на земле.

Ультразвуковые сигналы используются и некоторыми китами. Эти сигналы позволяют им охотиться на кальмаров при полном отсутствии света.

Установлено также, что ультразвуковые волны с частотой более $25$ кГц вызывают болезненные ощущения у птиц. Это используется, например, для отпугивания чаек от водоемовс питьевой водой.

Использование ультразвука в технике. Ультразвук находит широкое применение в науке и технике, где его получают с помощью различных механических (например, сирена) и электромеханических устройств.

Источники ультразвука устанавливают на кораблях и подводных лодках. Посылая короткие импульсы ультразвуковых волн, можно уловить их отражения от дна или каких-либо других предметов. По времени запаздывания отраженной волны можно судить о расстоянии до препятствия. Использующиеся при этом эхолоты и гидролокаторы позволяют измерять глубину моря, решать различные навигационные задачи (плавание вблизи скал, рифов и т. д.), осуществлять рыбопромысловую разведку (обнаруживать косяки рыб), а также решать военные задачи (поиск подводных лодок противника, бесперископные торпедные атаки и др.).

В промышленности по отражению ультразвука от трещин в металлических отливках судят о дефектах в изделиях.

Ультразвуки дробят жидкие и твердые вещества, образуя различные эмульсии и суспензии.

С помощью ультразвука удается осуществить пайку алюминиевых изделий, что с помощью других методов сделать не удается (так как на поверхности алюминия всегда имеется плотный слой оксидной пленки). Наконечник ультразвукового паяльника не только нагревается, но и совершает колебанияс частотой около $20$ кГц, благодаря чему оксидная пленка разрушается.

Преобразование ультразвука в электрические колебания, а их затем в свет позволяет осуществить звуковидение. При помощи звуковидения можно видеть предметы в непрозрачной для света воде.

В медицине при помощи ультразвука осуществляют сварку сломанных костей, обнаруживают опухоли, осуществляют диагностические исследования в акушерстве и т. д. Биологическое действие ультразвука (приводящее к гибели микробов) позволяет использовать его для пастерилизации молока, стерилизации медицинских инструментов.

Темы кодификатора ЕГЭ: давление жидкости, закон Паскаля, закон Архимеда, условия плавания тел.

В гидро- и аэростатике рассматриваются два вопроса: 1) равновесие жидкостей и газов под действием приложенных к ним сил; 2) равновесие твёрдых тел в жидкостях и газах.

При сжатии среды в ней возникают силы упругости, называемые силами давления . Силы давления действуют между соприкасающимися слоями среды, на погружённые в среду твёрдые тела, а также на дно и стенки сосуда.

Сила давления среды обладает двумя характерными свойствами.

1. Сила давления действует перпендикулярно поверхности выделенного элемента среды или твёрдого тела. Это объясняется текучестью среды: силы упругости не возникают в ней при относительном сдвиге слоёв, поэтому отсутствуют силы упругости, касательные к поверхности.

2. Cила давления равномерно распределена по той поверхности, на которую она действует.

Естественной величиной, возникающей в процессе изучения сил давления среды, является давление.

Пусть на поверхность площади действует сила , которая перпендикулярна поверхности и равномерно распределена по ней. Давлением называется величина

Единицей измерения давления служит паскаль (Па). 1 Па - это давление, производимое силой 1 Н на поверхность площадью 1 м .

Полезно помнить приближённое значение нормального атмосферного давления: Па.

Гидростатическое давление.

Гидростатическим называется давление неподвижной жидкости, вызванное силой тяжести. Найдём формулу для гидростатического давления столба жидкости.

Предположим, что в сосуд с площадью дна налита жидкость до высоты (рис. 1 ). Плотность жидкости равна

Объём жидкости равен , поэтому масса жидкости . Сила давления жидкости на дно сосуда - это вес жидкости. Так как жидкость неподвижна, её вес равен силе тяжести:

Разделив силу на площадь , получим давление жидкости:

Это и есть формула гидростатического давления.

Так, на глубине 10 м вода оказывает давление Па, примерно равное атмосферному. Можно сказать, что атмосферное давление приблизительно равно 10 м водного столба.

Для практики столь большая высота столба жидкости неудобна, и реальные жидкостные манометры - ртутные. Посмотрим, какую высоту должен иметь столб ртути ( кг/м), чтобы создать аналогичное давление:

Вот почему для измерения атмосферного давления широко используется миллиметр ртутного столба (мм рт. ст.).

Закон Паскаля.

Если поставить гвоздь вертикально и ударить по нему молотком, то гвоздь передаст действие молотка по вертикали, но не вбок. Твёрдые тела из-за наличия кристаллической решётки передают производимое на них давление только в направлении действия силы.

Жидкости и газы (напомним, что мы называем их средами) ведут себя иначе. В средах справедлив закон Паскаля.

Закон Паскаля. Давление, оказываемое на жидкость или газ, передаётся в любую точку этой среды без изменения по всем направлениям.

(В частности, на площадку, помещённую внутри жидкости на фиксированной глубине, действует одна и та же сила давления, как эту площадку ни поворачивай.)

Например, ныряльщик на глубине испытывает давление . Почему? Согласно закону Паскаля вода передаёт давление атмосферы без изменения на глубину , где оно прибавляется к гидростатическому давлению водяного столба .

Отличной иллюстрацией закона Паскаля служит опыт с шаром Паскаля. Это шар с множеством отверстий, соединённый с цилиндрическим сосудом (рис. 2 )

Если налить в сосуд воду и двинуть поршень, то вода брызнет из всех отверстий. Это как раз и означает, что вода передаёт внешнее давление по всем направлениям.

То же самое наблюдается и для газа: если сосуд наполнить дымом, то при движении поршня струйки дыма пойдут опять-таки из всех отверстий сразу. Стало быть, газ также передаёт давление по всем направлениям.

Вы ежедневно пользуетесь законом Паскаля, когда выдавливаете зубную пасту из тюбика. А именно, вы сжимаете тюбик в поперечном направлении, а паста двигается перпендикулярно вашему усилию - в продольном направлении. Почему? Ваше давление передаётся внутри тюбика по всем направлениям, в частности - в сторону отверстия тюбика. Туда-то паста и выходит.

Гидравлический пресс.

Гидравлический пресс - это устройство, дающее выигрыш в силе. То есть, прикладывая сравнительно небольшую силу в одном месте устройства, оказывается возможным получить значительно большее усилие в другом его месте.

Гидравлический пресс изображён на рис. 3 . Он состоит из двух сообщающихся сосудов, имеющих разную площадь поперечного сечения и закрытых поршнями. В сосудах между поршнями находится жидкость.

Принцип действия гидравлического пресса очень прост и основан на законе Паскаля.

Пусть - площадь малого поршня, - площадь большого поршня. Надавим на малый
поршень с силой . Тогда под малым поршнем в жидкости возникнет давление:

Согласно закону Паскаля это давление будет передано без изменения по всем направлениям в любую точку жидкости, в частности - под большой поршень. Следовательно, на большой поршень со стороны жидкости будет действовать сила:

Полученное соотношение можно переписать и так:

Мы видим, что больше во столько раз, во сколько больше . Например, если площадь большого поршня в 100 раз превышает площадь малого поршня, то усилие на большом поршне окажется в 100 раз больше усилия на малом поршне. Вот каким образом гидравлический пресс даёт выигрыш в силе.

Закон Архимеда.

Мы знаем, что дерево в воде не тонет. Следовательно, сила тяжести уравновешивается какой-то другой силой, действующей на кусок дерева со стороны воды вертикально вверх. Эта сила называется
выталкивающей или архимедовой силой. Она действует на всякое тело, погружённое в жидкость или газ.

Выясним причину возникновения архимедовой силы. Рассмотрим цилиндр площадью поперечного сечения и высотой , погружённый в жидкость плотности . Основания цилиндра горизонтальны. Верхнее основание находится на глубине , нижнее - на глубине (рис. 4 ).

Рис. 4.

На боковую поверхность цилиндра действуют силы давления, которые приводят лишь к сжатию цилиндра. Эти силы можно не принимать во внимание.

На уровне верхнего основания цилиндра давление жидкости равно . На верхнее основание действует сила давления , направленная вертикально вниз.

На уровне нижнего основания цилиндра давление жидкости равно . На нижнее основание действует сила давления , направленная вертикально вверх (закон Паскаля!).

Так как , то , и поэтому возникает равнодействующая сил давления, направленная вверх. Это и есть архимедова сила . Имеем:

Но произведение равно объёму цилиндра . Получаем окончательно:

. (1)

Это и есть формула для архимедовой силы. Возникает архимедова сила вследствие того, что давление жидкости на нижнее основание цилиндра больше, чем на верхнее.

Формулу (1) можно интерпретировать следующим образом. Произведение - это масса
жидкости , объём которой равен . Но тогда , где - вес жидкости, взятой в объёме . Поэтому наряду с (1) имеем:

. (2)

Иными словами, архимедова сила, действующая на цилиндр, равна весу жидкости, объём которой совпадает с объёмом цилиндра.

Формулы (1) и (2) справедливы и в общем случае, когда погружённое в жидкость или газ тело объёма имеет любую форму, а не только форму цилиндра (конечно, в случае газа - это плотность газа). Поясним, почему так получается.

Выделим мысленно в среде некоторый объём произвольной формы. Этот объём находится в равновесии: не тонет и не всплывает. Следовательно, сила тяжести, действующая на среду, находящуюся внутри выделенного нами объёма, уравновешена силами давления на поверхность нашего объёма со стороны остальной среды - ведь на нижние элементы поверхности приходится большее давление, чем на верхние.

Иными словами, равнодействующая сил гидростатического давления на поверхность выделенного объёма - архимедова сила - направлена вертикально вверх и равна весу среды в этом объёме.

Сила тяжести, действующая на наш объём, приложена к его центру тяжести. Значит, и архимедова сила должна быть приложена к центру тяжести выделенного объёма. В противном случае сила тяжести и архимедова сила образуют пару сил, которая вызовет вращение нашего объёма (а он находится в равновесии).

А теперь заменим выделенный объём среды твёрдым телом того же объёма и той же самой формы. Ясно, что силы давления среды на поверхность тела не изменятся, так как неизменной осталась конфигурация среды, окружающей тело. Поэтому архимедова сила попрежнему будет направлена вертикально вверх и равна весу среды, взятой в объёме . Точкой приложения архимедовой силы будет центр тяжести тела.

Закон Архимеда. На погружённое в жидкость или газ тело действует выталкивающая сила, направленная вертикально вверх и равная весу среды, объём которой равен объёму тела.

Таким образом, архимедова сила всегда находится по формуле (1) . Заметим, что в эту формулу не входят ни плотность тела, ни какие-либо его геометрические характеристики - при фиксированном объёме величина архимедовой силы не зависит от вещества и формы тела.

До сих пор мы рассматривали случай полного погружения тела. Чему равна архимедова сила при частичном погружении? На ту часть тела, которая находится над поверхностью жидкости, никакая выталкивающая сила не действует. Если эту часть мысленно срезать, то величина архимедовой силы не изменится. Но тогда мы получим целиком погружённое тело, объём которого равен объёму погружённой части исходного тела.

Значит, на частично погружённое в жидкость тело действует выталкивающая сила, равная весу жидкости, объём которой равен объёму погружённой части тела. Формула (1) справедлива и в этом случае, только объём всего тела нужно заменить на объём погружённой части погр:

Архимед обнаружил, что целиком погружённое в воду тело вытесняет объём воды, равный собственному объёму. Тот же факт имеет место для других жидкостей и газов. Поэтому можно сказать, что на всякое тело, погружённое в жидкость или газ, действует выталкивающая сила, равная весу вытесненной телом среды.

Плавание тел.

Рассмотрим тело плотности и жидкость плотности . Допустим, что тело полностью погрузили в жидкость и отпустили.

С этого момента на тело действуют лишь сила тяжести и архимедова сила . Если объём тела равен , то

Имеются три возможности дальнейшего движения тела.

1. Сила тяжести больше архимедовой силы: , или . В этом случае тело тонет.

2. Сила тяжести равна архимедовой силе: , или . В этом случае тело остаётся неподвижным в состоянии безразличного равновесия.

3. Сила тяжести меньше архимедовой силы: , или . В этом случае тело всплывает, достигая поверхности жидкости. При дальнейшем всплытии начнёт уменьшаться объём погружённой части тела, а вместе с ним и архимедова сила. В какой-то момент архимедова сила сравняется с силой тяжести (положение равновесия). Тело по инерции всплывёт дальше, остановится, снова начнёт погружаться. . . Возникнут затухающие колебания, после которых тело останется плавать в положении равновесия (), частично погрузившись в жидкость.

Таким образом, условие плавания тела можно записать в виде неравенства: .

Жидкостей и газов, согласно которому на всякое тело, пог-руженное в жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа) и направленная по вертикали вверх.

Этот закон был открыт древнегреческим ученым Архимедом в III в. до н. э. Свои исследования Архимед описал в трактате «О плавающих телах», который считается одним из последних его научных трудов.

Ниже приведены выводы, следующие из закона Архимеда .

Действие жидкости и газа на погруженное в них тело.

Если погрузить в воду мячик, наполненный воздухом, и отпустить его, то он всплывет. То же самое произойдет со щепкой, с пробкой и многими другими телами. Какая же сила заставляет их всплывать?

На тело, погруженное в воду, со всех сторон действуют силы давления воды (рис. а ). В каж-дой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростати-ческое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих иа тело сверху.

Если заменить все силы давления , приложенные к погруженному в воду телу, одной (резуль-тирующей или равнодействующей) силой, оказывающей на тело то же самое действие, что и все эти отдельные силы вместе, то результирующая сила будет направлена вверх. Это и заставляет тело всплывать. Эта сила называется выталкивающей силой, или архимедовой силой (по имени Архимеда, который впервые указал на ее существование и установил, от чего она зависит). На рисунке б она обозначена как F A .

Архимедова (выталкивающая) сила действует на тело не только в воде, но и в любой другой жидкости, т. к. в любой жидкости существует гидростатическое давление, разное на разных глу-бинах. Эта сила действует и в газах, благодаря чему летают воздушные шары и дирижабли.

Благодаря выталкивающей силе вес любого тела, находящегося в воде (или в любой другой жидкости), оказывается меньше, чем в воздухе, а в воздухе меньше, чем в безвоздушном про-странстве. В этом легко убедиться, взвесив гирю с помощью учебного пружинного динамометра сначала в воздухе, а затем опустив ее в сосуд с водой.

Уменьшение веса происходит и при переносе тела из вакуума в воздух (или какой-либо другой газ).

Если вес тела в вакууме (например, в сосуде, из которого откачан воздух) равен P 0 , то его вес в воздухе равен:

,

где F´ A — архимедова сила, действующая на данное тело в воздухе. Для большинства тел эта сила ничтожно мала и ею можно пренебречь, т. е. можно считать, что P возд. =P 0 =mg .

Вес тела в жидкости уменьшается значительно сильнее, чем в воздухе. Если вес тела в воздухе P возд. =P 0 , то вес тела в жидкости равен P жидк = Р 0 — F A . Здесь F A — архимедова сила, действующая в жидкости. Отсюда следует, что

Поэтому чтобы найти архимедову силу, действующую на тело в какой-либо жидкости, нужно это тело взвесить в воздухе и в жидкости. Разность полученных значений и будет архимедовой (выталкивающей) силой.

Другими словами, учитывая формулу (1.32), можно сказать:

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.

Определить архимедову силу можно также теоретически. Для этого предположим, что тело, погруженное в жидкость, состоит из той же жидкости, в которую оно погружено. Мы имеем пра-во это предположить, так как силы давления, действующие на тело, погруженное в жидкость, не зависят от вещества, из которого оно сделано. Тогда приложенная к такому телу архимедова сила F A будет уравновешена действующей вниз силой тяжести m ж g (где m ж — масса жидкости в объеме данного тела):

Но сила тяжести равна весу вытесненной жидкости Р ж . Таким образом.

Учитывая, что масса жидкости равна произведению ее плотности ρ ж на объем, формулу (1.33) можно записать в виде:

где V ж — объем вытесненной жидкости. Этот объем равен объему той части тела, которая погру-жена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом V всего тела; если же тело погружено в жидкость частично, то объем V ж вытесненной жидкости меньше объема V тела (рис. 1.39).

Формула (1.33) справедлива и для архимедовой силы, действующей в газе. Только в этом слу-чае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.

С учетом вышеизложенного закон Архимеда можно сформулировать так:

На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или га-за), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама