THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Тип урока. Приобретение новых знаний.

Задачи урока. Обучающие. Познакомить учащихся с новой классификацией химических реакций по признаку изменения степеней окисления элементов – с окислительно-восстановительными реакциями (ОВР); научить учащихся расставлять коэффициенты методом электронного баланса.

Развивающие. Продолжить развитие логического мышления, умений анализировать и сравнивать, формирование интереса к предмету.

Воспитательные. Формировать научное мировоззрение учащихся; совершенствовать трудовые навыки.

Методы и методические приемы. Рассказ, беседа, демонстрация средств наглядности, самостоятельная работа учащихся.

Оборудование и реактивы. Репродукция с изображением Колосса Родосского, алгоритм расстановки коэффициентов по методу электронного баланса, таблица типичных окислителей и восстановителей, кроссворд; Fе (гвоздь), растворы NаОН, СuSО 4 .

ХОД УРОКА

Вводная часть

(мотивация и целеполагание)

Учитель. В III в. до н.э. на острове Родос был построен памятник в виде огромной статуи Гелиоса (у греков – бог Солнца). Грандиозный замысел и совершенство исполнения Колосса Родосского – одного из чудес света – поражали всех, кто его видел.

Мы не знаем точно, как выглядела статуя, но известно, что она была сделана из бронзы и достигала в высоту около 33 м. Статуя была создана скульптором Харетом, на ее строительство ушло 12 лет.

Бронзовая оболочка крепилась к железному каркасу. Полую статую начали строить снизу и, по мере того как она росла, заполняли камнями, чтобы сделать ее устойчивее. Примерно через 50 лет после завершения строительства Колосс рухнул. Во время землетрясения он переломился на уровне колен.

Ученые считают, что истинной причиной недолговечности этого чуда стала коррозия металла. А в основе процесса коррозии лежат окислительно-восстановительные реакции.

Сегодня на уроке вы познакомитесь с окислительно-восстановительными реакциями; узнаете о понятиях «восстановитель» и «окислитель», о процессах восстановления и окисления; научитесь расставлять коэффициенты в уравнениях окислительно-восстановительных реакций. Запишите в своих рабочих тетрадях число, тему урока.

Изучение нового материала

Учитель проделывает два демонстрационных опыта: взаимодействие сульфата меди(II) со щелочью и взаимодействие этой же соли с железом.

Учитель. Запишите молекулярные уравнения проделанных реакций. В каждом уравнении расставьте степени окисления элементов в формулах исходных веществ и продуктов реакции.

Ученик записывает на доске уравнения реакций и расставляет степени окисления:

Учитель. Изменились ли степени окисления элементов в этих реакциях?

Ученик. В первом уравнении степени окисления элементов не изменились, а во втором изменились – у меди и железа .

Учитель. Вторая реакция относится к окислительно-восстановительным. Попробуйте дать определение окислительно-восстановительных реакций.

Ученик. Реакции, в результате которых изменяются степени окисления элементов, входящих в состав реагирующих веществ и продуктов реакции, называют окислительно-восстановительными реакциями.

Учащиеся записывают в тетради под диктовку учителя определение окислительно-восстановительных реакций.

Учитель. Что же произошло в результате окислительно-восстановительной реакции? До реакции у железа была степень окисления 0, после реакции стала +2. Как видим, степень окисления повысилась, следовательно, железо отдает 2 электрона.

У меди до реакции степень окисления +2, после реакции – 0. Как видим, степень окисления понизилась. Следовательно, медь принимает 2 электрона.

Железо отдает электроны, оно является восстановителем, а процесс передачи электронов называется окислением.

Медь принимает электроны, она – окислитель, а процесс присоединения электронов называется восстановлением.

Запишем схемы этих процессов:

Итак, дайте определение понятий «восстановитель» и «окислитель».

Ученик. Атомы, молекулы или ионы, которые отдают электроны, называют восстановителями.

Атомы, молекулы или ионы, которые присоединяют электроны, называют окислителями.

Учитель. Какое определение можно дать процессам восстановления и окисления?

Ученик. Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом.

Окислением называют процесс передачи электронов атомом, молекулой или ионом.

Учащиеся записывают под диктовку определения в тетрадь и выполняют рисунок.

Запомните!

Отдать электроны – окислиться.

Взять электроны – восстановиться.

Учитель. Окисление всегда сопровождается восстановлением, и наоборот, восстановление всегда связано с окислением. Число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем.

Для подбора коэффициентов в уравнениях окислительно-восстановительных реакций используют два метода – электронного баланса и электронно-ионного баланса (метод полуреакций).

Мы рассмотрим только метод электронного баланса. Для этого используем алгоритм расстановки коэффициентов методом электронного баланса (оформлен на листе ватмана).

П р и м е р. Расставьте коэффициенты в данной схеме реакции методом электронного баланса, определите окислитель и восстановитель, укажите процессы окисления и восстановления:

Fe 2 O 3 + CO Fe + CO 2 .

Воспользуемся алгоритмом расстановки коэффициентов методом электронного баланса.

3. Выпишем элементы, изменяющие степени окисления:

4. Составим электронные уравнения, определяя число отданных и принятых электронов:

5. Число отданных и принятых электронов должно быть одинаково, т.к. не заряжены ни исходные вещества, ни продукты реакции. Уравниваем число отданных и принятых электронов, подобрав наименьшее общее кратное (НОК) и дополнительные множители:

6. Полученные множители являются коэффициентами. Перенесем коэффициенты в схему реакции:

Fе 2 О 3 + 3СО = 2Fе + 3СО 2 .

Вещества, являющиеся окислителями или восстановителями во многих реакциях, называются типичными.

Вывешивается таблица, выполненная на листе ватмана.

Учитель. Окислительно-восстановительные реакции очень распространены. С ними связаны не только процессы коррозии, но и брожение, гниение, фотосинтез, процессы обмена веществ, протекающие в живом организме. Их можно наблюдать при сгорании топлива. Окислительно-восстановительные процессы сопровождают круговороты веществ в природе.

Знаете ли вы, что в атмосфере ежедневно образуется примерно 2 млн т азотной кислоты, или
700 млн т в год, и в виде слабого раствора выпадают на землю с дождями (человек производит азотной кислоты лишь 30 млн т в год).

Что же происходит в атмосфере?

Воздух содержит 78% по объему азота, 21% кислорода и 1% других газов. Под действием грозовых разрядов, а на Земле ежесекундно вспыхивают в среднем 100 молний, происходит взаимодействие молекул азота с молекулами кислорода с образованием оксида азота(II):

Оксид азота(II) легко окисляется атмосферным кислородом в оксид азота(IV):

NO + O 2 NO 2 .

Образовавшийся оксид азота(IV) взаимодействует с атмосферной влагой в присутствии кислорода, превращаясь в азотную кислоту:

NO 2 + Н 2 О + O 2 HNO 3 .

Все эти реакции – окислительно-восстановительные.

Задание . Расставьте в приведенных схемах реакций коэффициенты методом электронного баланса, укажите окислитель, восстановитель, процессы окисления и восстановления.

Решение

1. Определим степени окисления элементов:

2. Подчеркнем символы элементов, степени окисления которых изменяются:

3. Выпишем элементы, изменившие степени окисления:

4. Cоставим электронные уравнения (определим число отданных и принятых электронов):

5. Число отданных и принятых электронов одинаково.

6. Перенесем коэффициенты из электронных схем в схему реакции:

Далее учащимся предлагается самостоятельно расставить коэффициенты методом электронного баланса, определить окислитель, восстановитель, указать процессы окисления и восстановления в других процессах, происходящих в природе.

Два других уравнения реакций (с коэффициентами) имеют вид:

Проверку правильности выполнения заданий проводят с помощью кодоскопа.

Заключительная часть

Учитель предлагает учащимся разгадать кроссворд по изученному материалу. Результат работы сдается на проверку.

Разгадав кроссворд , вы узнаете, что вещества КМnО 4 , К 2 Сr 2 O 7 , О 3 – cильные … (по вертикали (2)).

По горизонтали:

1. Какой процесс отражает схема:

3. Реакция

N 2 (г.) + 3Н 2 (г.) 2NН 3 (г.) + Q

является окислительно-восстановительной, обратимой, гомогенной, … .

4. … углерода(II) – типичный восстановитель.

5. Какой процесс отражает схема:

6. Для подбора коэффициентов в уравнениях окислительно-восстановительных реакций используют метод электронного … .

7. Согласно схеме алюминий отдал … электрона.

8. В реакции:

Н 2 + Сl 2 = 2НCl

водород Н 2 – … .

9. Реакции какого типа всегда только окислительно-восстановительные?

10. Степень окисления у простых веществ – … .

11. В реакции:

восстановитель – … .

Задание на дом. По учебнику О.С.Габриеляна «Химия-8» § 43, с. 178–179, упр. 1, 7 письменно.

З а д а ч а (на дом). Конструкторы первых космических кораблей и подводных лодок столкнулись с проблемой: как поддержать постоянный состав воздуха на судне и космических станциях? Избавиться от избытка углекислого газа и пополнить запас кислорода? Решение было найдено.

Надпероксид калия KO 2 в результате взаимодействия с углекислым газом образует кислород:

Как видите, это окислительно-восстановительная реакция. Кислород в этой реакции является и окислителем, и восстановителем.

В космической экспедиции на счету каждый грамм груза. Рассчитайте запас надпероксида калия, который необходимо взять в космический полет, если полет рассчитан на 10 дней и если экипаж состоит из двух человек. Известно, что человек за сутки выдыхает 1 кг углекислого газа.

(Ответ. 64,5 кг KO 2 .)

З а д а н и е (повышенный уровень сложности). Запишите уравнения окислительно-восстановительных реакций, которые могли привести к разрушению Колосса Родосского. Имейте в виду, что эта гигантская статуя стояла в портовом городе на острове в Эгейском море, у берегов современной Турции, где влажный средиземноморский воздух насыщен солями. Она была сделана из бронзы (сплав меди и олова) и смонтирована на железном каркасе.

Литература

Габриелян О.С . Химия-8. М.: Дрофа, 2002;
Габриелян О.С., Воскобойникова Н.П., Яшукова А.В. Настольная книга учителя. 8 класс. М.: Дрофа, 2002;
Кокс Р., Моррис Н . Семь чудес света. Древний мир, средние века, наше время. М.: БММ АО, 1997;
Малая детская энциклопедия. Химия. М.: Русское энциклопедическое товарищество, 2001; Энциклопедия для детей «Аванта+». Химия. Т. 17. М.: Аванта+, 2001;
Хомченко Г.П., Севастьянова К.И. Окислительно-восстановительные реакции. М.: Просвещение, 1989.

1. Как определить окислительно-восстановительную реакцию?

Существуют различные классификации химических реакций. К одной из них относится такие, при которых вещества, вступающие во взаимодействие друг с другом (или само вещество) меняют степени окисления элементов.

В качестве примера рассмотрим две реакции:

Zn 0 + 2Н +1 С1 -1 = Zn +2 Cl 2 -1 + Н 2 0 (1)
Н +1 Cl -1 + К +1 О -2 Н +1 = К +1 Cl -1 + H 2 +1 O -2 (2)

В реакции (1) участвуют цинк и соляная кислота . Цинк и водород меняют свои степени окисления, хлор оставляет свою степень окисления неизменной:

Zn 0 - 2е = Zn 2+
2Н +1 + 2е = H 2 0
2Сl -1 = 2 Сl -1

А в реакции (2), (реакция нейтрализации ), хлор, водород, калий, и кислород не меняют свои степени окисления: Сl -1 = Cl -1 , H +1 = H +1 , К +1 = К +1 , O -2 = O -2 ; Реакция (1) относится к окислительно-восстановительной, а реакция (2) принадлежит к другому типу.

Химические реакции, которые осуществляются с изменением степени окисления элементов , называются окислительно-восстановительными.

Для того чтобы определить окислительно-восстановительную реакцию необходимо установить степе ни окисления элементов в левой и в правой части уравнения. Для этого требуется знать, как определить степень окисления того или иного элемента.

В случае реакции (1) элементы Zn и Н меняют свои состояния, теряя или приобретая электроны. Цинк, отдавая 2 электрона, переходит в ионное состояние – становится катионом Zn 2+ . В данном случае происходит процесс восстановления и цинк окисляется. Водород приобретает 2 электрона, проявляет окислительные свойства, сам в процессе реакции восстанавливается .

2. Определение степени окисления элементов .

Степень окисления элементов в его соединениях определяется, исходя из положения, что общий суммарный заряд степеней окисления всех элементов данного соединения равен нулю. Например, в соединении Н 3 РО 4 степени окисления у водорода +1, у фосфора +5, у кислорода -2; Составив математическое уравнение определим, что в сумме число частиц (атомов или ионов) составят заряд равный нулю: (+1)x3+(+5)+(-2)х4 = 0

Но в данном примере уже заданы степени окисления элементов. Каким же образом можно определить степень окисления cеры, например, в соединении тиосульфат натрия Na 2 S 2 O 3 , или марганца в соединении перманганат калия - КMnO 4 ? Для этого необходимо знать постоянные степени окисления ряда элементов . Они имеют следующие значения:

1) Элементы I группы периодической системы (в том числе водород в соединении с неметаллами) +1;
2) Элементы II группы периодической системы +2;
3) Элементы III группы периодической системы +3;
4) Кислород (кроме в соединении со фтором или в перекисных соединениях) -2;

Исходя из этих постоянных значений степеней окисления (для натрия и кислорода) определим степень окисления серы в соединении Na 2 S 2 O 3 . Поскольку суммарный заряд всех степеней окисления элементов, состав которых отражает данная формула соединения , равен нулю, то обозначив неизвестный заряд у серы «» (поскольку в формуле два атома серы), составим следующее математическое равенство:

(+1) х 2 + + (-2) х 3 = 0

Решая это уравнение относительно 2 х, получим

2Х= (-1) х 2 + (+2) х 3
или
Х = [(-2) + (+6)] : 2 = +2;

Следовательно, степень окисления серы в соединении Na 2 S 2 O 3 равна (+2). Но неужели всегда будет необходимо пользоваться таким неудобным методом для определения степеней окисления тех или иных элементов в соединениях? Конечно же не всегда. К примеру, для бинарных соединений: оксидов, сульфидов, нитридов и т.д., можно пользоваться для определения степеней окисления так называемым методом «крест-на-крест». Допустим, дана формула соединения: оксид титана – Ti 2 O 3 . Используя простой математический анализ, исходя из того, что степень окисления кислорода нам известна и равна (-2): Ti 2 O 3 , нетрудно установить, что степень окисления у титана будет равна (+3). Или, к примеру, в соединении метан СН 4 известно, что степень окисления водорода равна (+1), тогда не составляет труда определить степень окисления углерода. Она будет соответствовать в формуле этого соединения (-4). Так же, пользуясь методом «крест-на-крест», не сложно установить, что если дана следующая формула соединения Cr 4 Si 3 , то степень окисления хрома в неё равна (+3), а кремния (-4).
Для солей так же это не предоставляется затруднительным. Причём не имеет значения, дана или средняя соль или кислая соль . В данных случаях необходимо исходить из солеобразующей кислоты. К примеру, дана соль нитрат натрия (NaNO 3). Известно, что она является производной азотной кислоты (НNO 3), а в этом соединении степень окисления азота равна (+5), следовательно, и в её соли – нитрате натрия, степень окисления азота так же равна (+5). Гидрокарбонат натрия (NaHCO 3) является кислой солью угольной кислоты (H 2 CO 3). Так же, как и в кислоте, степень окисления углерода в этой соли будет равна (+4).

Следует отметить то обстоятельство, что степени окисления в соединениях: металлах и неметаллах (при составлении уравнения электронного баланса ) равны нулю: К 0 , Са 0 , Аl 0 , Н 2 0 , Cl 2 0 ,N 2 0 В качестве примера приведём степени окисления наиболее типичных элементов:

Только окислителями являются вещества, имеющие максимальную, как правило положительную, степень окисления, например: КCl +7 O 4 , H 2 S +6 O 4 , K 2 Cr +6 O 4 , HN +5 O 3 , KMn +7 O 4 . Это легко доказать. Если бы данные соединения могли быть восстановителями, то в данных состояниях они должны были бы отдавать электроны:

Cl +7 – е = Cl +8
S +6 – е = S +7

Но элементы хлор и сера не могут существовать с такими степенями окисления. Аналогичным образом, только восстановителями являются вещества, имеющие минимальную, как правило, отрицательную степень окисления, например: H 2 S -2 , HJ - , N -3 H 3. В процессе окислительно-восстановительных реакций такие соединения не могут быть окислителями, поскольку им пришлось бы присоединять электроны:

S -2 + е = S -3
J - + е = J -2

Но для серы и йода ионы с такими степенями окисления не характерны. Элементы с промежуточными степенями окисления, например N +1 , N +4 , S +4 , Сl +3 , С +2 могут проявлять как окислительные, так и восстановительные свойства.

3 . Типы окислительно-восстановительных реакций.

Существует четыре типа окислительно-восстановительных реакций.

1) Межмолекулярные окислительно-восстановительные реакции .
Наиболее часто встречающийся тип реакций. При данных реакциях изменяются степени окисления элементов в разных молекулах, например:

2Bi +3 Сl 3 + 3Sn +2 Cl 2 = 2Bi 0 + 3Sn +4 Cl 4

Bi +3 - 3е = Bi 0

Sn +2 + 2е = Sn +4

2) Разновидностью межмолекулярных окислительно-восстановительных реакций является реакция конпропорционирования, в которой окислителем и восстановителем являются атомы одного и того же элемента: в данной реакции два атома одного элемента различными степенями окисления образуют один атом с иной степенью окисления:

SO 2 +4 + 2H 2 S -2 = 3S 0 + 2Н 2 O

S -2 - 2е = S 0

S +4 + 4е = S 0

3) Реакции диспропорционирования осуществляются в случае, если окислителем и восстановителем являются атомы одного и того же элемента, или один атом элемента с одной степенью окисления образует соединение с двумя степенями окисления:

N +4 O 2 + NaOH = NaN +5 O 3 + NaN +3 O 2 + H 2 O

N +4 - е = N +5

N +4 + е = N +3

4) Внутримолекулярные окислительно-восстановительные реакции происходят в случаях, когда атом-окислитель и атом - восстановитель находятся в составе одного вещества, например:

N -3 H 4 N +5 O 3 = N +1 2 O + 2H 2 O

2N -3 - 8е =2N +1

2N +5 + 8е = 2N +1

4 . Механизм окислительно-восстановительных реакций.

Окислительно-восстановительные реакции осуществляются за счет перехода электронов от атомов одного элемента к другому. Если атом или молекула теряет электроны, то такой процесс называется окислением, а данный атом является восстановителем, например:

Al 0 - 3e = Al 3+

2Cl - - 2e = Cl 2 0

Fe 2+ - e = Fe 3+

В данных примерах Al 0 , Cl - , Fe 2+ являются восстановителями, а процессы их превращения в соединения Аl 3+ , Сl 2 0 , Fe 3+ называются окислительными. Если атом или молекула приобретают электроны, то такой процесс называется восстановлением, а данный атом явля­ется окислителем, например:

Ca 2+ + 2e = Ca 0

Cl 2 0 + 2e = 2Cl -

Fe 3+ + e = Fe 2+

Окислителями, как правило, являются неметаллы (S, Cl 2 ,F 2 , О 2) или соединения металлов, имеющих максимальную степень окисления (Mn +7 , Cr +6 , Fe +3). Восстановителями являются металлы (К, Са, Аl) или соединения неметаллов, имеющих минимальную степень окисления (S -2 , Сl -1 , N -3 , P -3);

Окислительно-восстановительные уравнения отличаются от молекулярных уравнений других реакций сложностью подбора коэффициентов перед реагентами и продуктами реакции. Для этого используют метод электронного баланса , либо метод электронно-ионных уравнений (иногда последний называют «метод полуреакций »). В качестве примера составления уравнений окислительно-восстановительных реакций рассмотрим процесс, при котором концентрированная серная кислота (H 2 SO 4) вступит во взаимодействие с йодистым водородом (HJ):

H 2 SO 4 (конц.) + HJ → H 2 S + J 2 + H 2 O

Прежде всего, установим, что степень окисления йода в йодистом водороде равна (-1), а серы в серной кислоте: (+6). В процессе реакции йод (-1) будет окисляться до молекулярного состояния, а сера (+6) восстанавливаться до степени окисления (-2) – сероводорода:

J - → J 0 2
S +6 → S -2

Чтобы составить необходимо учесть, что количество частиц атомов в левой и в правой частях полуреакций должно быть одинаковой

2J - - 2e → J 0 2
S +6 + 8e → S -2

Установив вертикальную черту, справа данной схемы полуреакции, определим коэффициенты реакции:

2J - - 2e → J 0 2 |8
S +6 + 8e → S -2 |2

Сократив на «2», получим окончательные значения коэффициентов:

2J - - 2e → J 0 2 |4
S +6 + 8e → S -2 |1

Подведем под данной схемой полуреакции горизонтальную черту и суммируем участвующее в реакции количество частиц атомов:

2J - - 2e → J 0 2 |4
S +6 + 8e → S -2 |1
____________________
8J - + S +6 → 4 J 0 2 + S -2

После этого необходимо . Подставив полученные значения коэффициентов в молекулярное уравнение, приведем его к данному виду:

8HJ + H 2 SO 4 = 4J 2 + H 2 S + Н 2 O

Подсчитав количество атомов водорода в левой и правой частях уравнения, убедимся в необходимости коррекции коэффициента « 4 » перед водой, получим полное уравнение:

8HJ + H 2 SO 4 = 4J 2 + H 2 S + 4Н 2 O

Данное уравнение можно составить, используя метод электронно- ионного баланса . В этом случае отпадает необходимость в коррекции коэффициента перед молекулами воды. Уравнение составляется на основе диссоциации ионов соединений, участвующих в реакции: Например, диссоциация серной кислоты приводит к тому, что образуются два протона водорода и сульфат-анион:

H 2 SO 4 ↔ 2H + + SO 4 2-

Аналогичным образом можно записать диссоциацию иодистого водорода и сероводорода:

HJ ↔ Н + + J -
H 2 S ↔ 2Н + + S 2-

J 2 не диссоциирует. Так же практически не диссоциирует Н 2 О. Составление уравнения методом полуреакции по йоду остается такой же:

2J - - 2e → J 0 2
Полуреакция по атомам серы приобретет следующую форму:

SO 4 -2 → S -2

Поскольку в правой части полуреакции недостает четыре атома кислорода, то это количество необходимо сбалансировать за счет воды:

SO 4 -2 → S -2 + 4H 2 О

Тогда в левой части полуреакции необходимо компенсировать атомы водорода за счет протонов (т.к. реакция среды кислая):

SO 4 2- + 8Н + → S -2 + 4H 2 О

Подсчитав количество переходящих электронов, получим полную запись уравнения по методу полуреакций :

SO 4 2- + 8Н + + 8е → S -2 + 4H 2 О

Суммируя обе полуреакции, получим уравнение электронного баланса :

2J - - 2e → J 0 2 |8 4
SO 4 2- + 8Н + + 8е → S -2 + 4H 2 О |2 1

8J - + SO 4 2- +8Н + → 4J 2 0 + S 0 + 4H 2 O

Из данной записи следует, что метод электронно-ионного уравнения дает более полную картину окислительно-восста­новительной реакции, чем метод электронного баланса. Количество электронов, участвующих в процессе, совпадает при обоих методах баланса, но в последнем случае как бы «автоматически» устанавливается количество протонов и молекул воды, участвующих в окислительно-восстановительном процессе.

Разберем несколько конкретных случаев окислительно-восстанови-тельных реакций, которые можно составить методом электронно-ионного баланса . Некоторые окислительно-восстановительные процессы осу-ществляются при участии щелочной среды, например:

KCrO 2 + Br 2 + KOH → KBr + K 2 CrO 4 +H 2 O

В данной реакции восстановителем является хромит-ион (CrО 2 -), который окисляется до хромат-иона (CrO -2 4). Окислитель - бром (Br 0 2) восстанавливается до бромид-иона (Br -):
СrO 2 - → CrO 4 2-
Br 0 2 → 2 Br -

Поскольку реакция происходит в щелочной среде, то первую полуреакцию необходимо составить с учетом гидроксид-ионов (OH -):
CrO 2 - + 4OH - - 3e = CrO 2- 4 + 2H 2 O

Вторую полуреакцию составляем уже известным способом:
CrO 2 - + 4OH - -3е = CrO 4 2 - + 2H 2 O |2
Br 0 2 + 2e = Br - |3
__________
2CrO 2 - + 3Br 2 0 + 8OH - = 2CrO 2- 4 + 6Br - + 4H 2 O

После этого необходимо окончательно расставить коэффициенты в уравнении реакции и полностью молекулярное уравнение данного окислительно-восстановительного процесса примет вид:

2KCrO 2 + 3Br 2 + 8KOH = 2K 2 CrO 4 + 6KBr + 4H 2 O.

В ряде случаев в окислительно-восстановительной реакции участвуют одновременно и недиссоциируемые вещества. Например:

AsH 3 + HNO 3 = H 3 AsO 4 + NO 2 + 4H 2 O

Тогда метод полуреакций составляется с учетом данного процесса:

AsH 3 + 4H 2 O – 8e = AsO 4 3- + 11H + |1
NО 3 + 2H + + e = NO 2 + H 2 O |8

AsH 3 + 8NО 3 + 4H 2 O + 2H + = AsO 4 3- + 8NO 2 + 11H + O

Молекулярное уравнение примет вид:

AsH 3 + 8HNO 3 = H 3 AsO 4 + 8NO 2 + 4H 2 O.

Окислительно-восстановительные реакции иногда сопровождаются одновременным процессом окисления-восстановления нескольких веществ. Например, в реакции с сульфидом меди взаимодействует концентрированная азотная кислота :

Cu 2 S + HNO 3 = Cu(NO 3) 2 + H 2 SO 4 + NO + H 2 O

D окислительно-восстановительном процессе участвуют атомы меди, серы и азота. При составлении уравнения методом полуреакций необходимо учитывать стадии данного процесса:

Cu + → Cu 2+
S 2- → S +6
N 5+ → N +2

В данной ситуации необходимо объединить в одну стадию окислительные и восстановительные процессы:

2Cu + - 2e → 2Cu 2+ | 10e
S 2- - 8e → S 6+
_______________________
N 5+ + 3e → N 2+ | 3e

При котором окислительно-восстановительная полуреакция примет вид:

2Cu + - 2e → 2Cu 2+
S 2- - 8e → S 6+ 3 (процессы восстановления )
_______________________
N 5+ + 3e → N 2+ 10 (процесс окисления)
_____________________________________

6Cu + + 3S 2- + 10N 5+ → 6Cu 2+ + 3S 6+ + 10N 2+

В итоге молекулярное уравнение реакции примет вид:

3Cu 2 S + 22HNO 3 = 6Cu(NO 3) 2 + 3H 2 SO 4 + 10NO + 8H 2 O.

Особое внимание следует уделить окислительно-восстановительным реакциям с участием органических веществ. Например, при окислении глюкозы перманганатом калия в кислой среде происходит следующая реакция:

C 6 H 12 O 6 +KMnO 4 + H 2 SO 4 > CO 2 + MnSO 4 + K 2 SO 4 + H 2 O

При составлении баланса методом полуреакции превращения глюкозы учитывается отсутствие её диссоциации, но коррекцию количества атомов водорода осуществляется за счет протонов и молекул воды:

C 6 H 12 O 6 + 6H 2 O - 24e = 6CO 2 + 24H +

Полуреакция с участием перманганата калия примет вид:

MnO 4 - + 8H + + 5e = Mn 2+ +4H 2 O

В итоге получим следующую схему окислительно-восствновительного процесса:

C 6 H 12 O 6 + 6H 2 O - 24e = 6CO 2 + 24H + | 5
MnО 4 - +8H + + 5e = Mn +2 + 4H 2 O |24
___________________________________________________

5C 6 H 12 O 6 + 30H 2 O + 24MnО 4 - + 192H + = 30CO 2 + 120H + + 24Mn 2+ + 96H 2 O

Сократив количества протонов и молекул воды в левой и правой части полуреакции , получим итоговое молекулярное уравнение :

5C 6 H 12 O 6 + 24KMnO 4 + 36H 2 SO 4 = 30CO 2 + 24MnSO 4 + 12K 2 SO 4 + 66H 2 O

5. Влияние среды на характер протекания окислительно-восстановительных реакций.

В зависимости от среды (избыток H + , нейтральной, избыток OH -) может изменяться характер протекания реакции между одними и теми же веществами. Для создания кислой среды обычно используется серная кислота (H 2 SO 4), азотная кислота (HNO 3), соляная кислота (HCl), в качестве среды OH - применяют гидроксид натрия (NaOH) или гидроксид калия (KOH). Например покажем, как среда влияет на переманганат калия (КMnO 4) . и продукты его реакции:

Для примера возьмём в качестве восстановителя Na 2 SO 3 , в качестве окислителя KMnO 4

В кислой среде:

5Na 2 SO 3 + 2KMnO 4 + 3H 2 SO 4 → 5Na 2 SO 4 + 2MnSO 4 + K 2 SO 4 + 3H 2 O

SO 3 2- + H 2 O - 2e → SO 4 2- + 2H + |5
MnO 4 - + 8H + + 5e → Mn 2+ + 4H 2 O |2
________________________________________________
5SO 3 2- + 2MnO 4 - + 6H + → 5SO 4 2- + 2Mn 2+ + 3H 2 O

В нейтральной (или слабощелочной) :

3Na 2 SO 3 + 2KMnO 4 + H 2 O → 3Na 2 SO 4 + 2MnO 2 + 2KOH

SO 3 2- + H 2 O - 2e → SO 4 2- + 2H + |3
MnO 4 - + 2H 2 O + 3e → MnO 2 + 4OН |2
_____________________________________
3SO 3 2- + 2 MnO 4 - + H 2 O → 3SO 4 2- + 2MnO 2 + 2OН

В сильно щелочной среде:

Na 2 SO 3 + 2KMnO 4 + 2NaOH → Na 2 SO 4 + K 2 MnO 4 + Na 2 MnO + H 2 O

SO 3 2- + 2 OН - - 2e → SO 4 2- + H 2 O |1
MnO 4 - + e → MnO 4 2 |2
____________________________________

SO 3 2- + 2 MnO 4 - + 2OH → SO 4 2- + 2MnO 4 2- + H 2 O

Пероксид водорода (Н 2 О 2) в зависимости от среды восстанавливается согласно схеме:

1) Кислая среда (H +) H 2 O 2 + 2H + + 2е → 2H 2 O

2) Нейтральная среда (Н 2 О) H 2 O 2 + 2е → 2ОН

3) Щелочная среда (ОН -) H 2 O 2 + 2е → 2ОН

Пероксид водорода (Н 2 О 2) выступает как окислитель:

2FeSO 4 + H 2 O 2 + H 2 SO 4 → Fe 2 (SO 4) 3 + 2H 2 O

Fe 2+ - е = Fe 3+ |2
H 2 O 2 + 2H + + 2е = 2Н 2 О |1
________________________________
2Fe 2+ + H 2 O 2 + 2H + → 2Fe 3+ + 2 Н 2 О

Однако, встречаясь с очень сильными окислителями (KMnO 4) Пероксид водорода (Н 2 О 2) выступает как восстановитель:

5H 2 O 2 + 2KMnO 4 + 3H 2 SO 4 → 5O 2 + 2MnSO 4 + K 2 SO 4 + 8H 2 O

H 2 O 2 – 2e → O 2 + 2H + |5
MnO 4 - + 8H + + 5e → Mn 2+ + 4H 2 O |2
_________________________________
5H 2 O + 2 MnO 4 - + 6H + → 5O 2 + 2Mn 2+ + 8H 2 O

6. Определение продуктов окислительно-восстановительных реакций.

В практической части данной темы рассматриваются окислительно-восстановительные процессы с указанием только исходных реагентов. Продукты реакций, как правило, необходимо определить. Например, в реакции участвуют хлорид железа (FeCl 3) и иодид калия (KJ):

FeCl 3 + KJ = A + B + C

требуется установить формулы соединений A, B, C, образующиеся в результате окислительно-восстановительного процесса.

Исходные степени окисления реагентов следующие: Fe 3+ , Cl - , K + , J - . Нетрудно предположить, что Fe 3+ , являясь окислителем (имеет максимальную степень окисления), может только снизить свою степень окисления до Fe 2+ :

Fe 3+ + e = Fe 2+

Хлорид-ион и ион калия в реакции не изменяют свою степень окисления, а иодид-ион может только повысить свою степень окисления, т.е. перейти в состояние J 2 0:

2J - - 2e = J 2 0

В результате реакции, помимо окислительно-восстановительного процесса, произойдет реакция обмена между FeCl 3 и KJ, но с учетом изменения степеней окисления реакция определяется не по данной схеме:

FeCl 3 + KJ = FeJ 3 + KCl,

а примет вид

FeCl 3 + KJ = FeJ 2 + KCl,

где в качестве продукта C обозначается соединение J 2 0:

FeCl 3 + 6KJ = 2FeJ 2 + 6KJ + J 2

Fe 3+ + e ═> Fe 2+ |2

2J - - 2e ═> J 2 0 |1

________________________________

2Fe +3 + 2J - = 2Fe 2+ + J 2 0

В дальнейшем, при определении продуктов окислительно-восстановительного процесса, можно применять так называемую «систему лифта». Принцип её заключается в том, что любую окислительно-восстановительную реакцию можно представить, как движение лифтов в многоэтажном строении в двух взаимно противоположных направлениях. Причём, «этажами» будут являться степени окисления соответствующих элементов. Поскольку любая из двух полуреакций в окислительно-восстановительном процессе сопровождается либо понижением, либо повышением степени окисления того или иного элемента, то простым рассуждением можно предположить о возможных их степенях окисления в образующихся продуктах реакции.

В качестве примера приведём реакцию, в которой сера реагирует с концентрированным раствором гидроксида натрия (NaOH):

S + NaOH(конц) = (А) + (В) + H 2 O

Поскольку в данной реакции изменения будут происходить только со степенями окисления серы, то для наглядности составим диаграмму её возможных состояний:

Соединениями (А) и (В) не могут быть одновременно состояния серы S +4 и S +6 , поскольку в данном случае процесс происходил бы только с отдачей электронов, т.е. являлся бы восстановительным:

S 0 - 4е = S +4

S 0 - 6е = S +6

Но это противоречило бы принципу окислительно-восстановительных процессов. Тогда следует полагать, что в одном случае процесс должен проходить с отдачей электронов, а в другом двигаться в противоположном направлении, т.е. быть окислительным:

S 0 - 4е = S +4

S 0 + 2е = S -2

С другой стороны, насколько вероятно, что процесс восстановления будет осуществляться до состояния S +4 или до S +6 ? Поскольку реакция протекает в щелочной, а не в кислой среде, то окислительная возможность её значительно ниже, поэтому образование соединения S +4 в этой реакции предпочтительнее, чем S +6 . Следовательно, реакция в окончательном варианте примет вид:

4S + 6NaOH(конц) = Na 2 SO 3 + 2Na 2 S + 3H 2 O

S 0 +2e = S - 2 | 4 | 2

S 0 + 6OH - - 4e = SO 3 2 - + 3H 2 O | 2 | 1

3S 0 + 6OH - = 2S - 2 + SO 3 2 - + 3H 2 O

В качестве другого примера разберём следующую реакцию между фосфином и концентрированной азотной кислотой (HNO 3) :

PH 3 + HNO 3 = (А) + (В) + H 2 O

В данном случае имеем изменяющиеся степени окисления у фосфора и азота. Для наглядности приведём диаграммы состояния их степеней окисления.

Фосфор в состоянии степени окисления (-3) будет проявлять только восстановительные свойства, поэтому в реакции он будет повышать свою степень окисления. Азотная кислота сама по себе является сильным окислителем и создаёт кислую среду, поэтому фосфор от состояния (-3) достигнет своей максимальной степени окисления (+5).

В противоположность этому азот будет понижать свою степень окисления. В реакциях данного типа обычно до состояния (+4).

Далее нетрудно предположить, что фосфор в состоянии (+5), являясь продуктом (А), может быть только ортофосфорной кислотой H 3 PO 4, поскольку среда реакции сильнокислая. Азот в таких случаях, обычно принимает степень окисления (+2) или (+4), чаще (+4). Поэтом продуктом (В) будет оксид азота NO 2 . Остаётся только решить это уравнение методом баланса:

P - 3 – 8e = P +5 | 1
N+ 5 + e = N +4 | 8

P - 3 + 8N +5 = P +5 + 8N +4

PH 3 + 8HNO 3 = H 3 PO 4 + 8NO 2 + 4H 2 O

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Прежде чем приводить примеры окислительно-восстановительных реакций с решением, выделим основные определения, связанные с данными превращениями.

Те атомы или ионы, которые в ходе взаимодействия меняют степень окисления с понижением (принимают электроны), называют окислителями. Среди веществ, обладающих такими свойствами, можно отметить сильные неорганические кислоты: серную, соляную, азотную.

Окислитель

Также к сильным окислителям относятся перманганаты и хроматы щелочных металлов.

Окислитель принимает то в ходе реакции, которое необходимо ему до завершения энергетического уровня (установления завершенной конфигурации).

Восстановитель

Любая схема окислительно-восстановительной реакции предполагает выявление восстановителя. К нему относят ионы или нейтральные атомы, способные повышать в ходе взаимодействия показатель степени окисления (отдают электроны иным атомам).

В качестве типичных восстановителей можно привести атомы металлов.

Процессы в ОВР

Чем еще характеризуются характеризуются изменением степеней окисления у исходных веществ.

Окисление предполагает процесс отдачи отрицательных частиц. Восстановление предполагает принятие их от других атомов (ионов).

Алгоритм разбора

Примеры окислительно-восстановительных реакций с решением предлагаются в различных справочных материалах, предназначенных для подготовки старшеклассников к выпускным испытаниям по химии.

Для того чтобы успешно справиться с предлагаемые в ОГЭ и ЕГЭ заданиями, важно владеть алгоритмом составления и разбора окислительно-восстановительных процессов.

  1. В первую очередь проставляют зарядовые величины у всех элементов в веществах, предложенных в схеме.
  2. Выписываются атомы (ионы) из левой части реакции, которые в ходе взаимодействия, поменяли показатели.
  3. При повышении степени окисления используется знак «-», а при понижении «+».
  4. Между отданными и принятыми электронами определяется наименьшее общее кратное (число, на которое они делятся без остатка).
  5. При делении НОК на электроны, получаем стереохимические коэффициенты.
  6. Расставляем их перед формулами в уравнение.

Первый пример из ОГЭ

В девятом классе далеко не все школьники знают, как решать окислительно-восстановительные реакции. Именно поэтому они допускают множество ошибок, не получают высоких баллов за ОГЭ. Алгоритм действий приведен выше, теперь попробуем отработать его на конкретных примерах.

Особенность заданий, касающихся расстановки коэффициентов в предложенной реакции, выданных выпускникам основной ступени обучения, в том, что и левая, и правая части уравнения даны.

Это существенно упрощает задачу, так как не нужно самостоятельно придумывать продукты взаимодействия, подбирать недостающие исходные вещества.

Например, предлагается с помощью электронного баланса выявить коэффициенты в реакции:

На первый взгляд, в данной реакции не требуются стереохимические коэффициенты. Но, для того, чтобы подтвердить свою точку зрения, необходимо у всех элементов зарядовые числа.

В бинарных соединениях, к которым относится оксид меди (2) и оксид железа (2), сумма степеней окисления равна нулю, учитывая, что у кислорода она -2, у меди и железа данный показатель +2. Простые вещества не отдают (не принимают) электроны, поэтому для них характерна нулевая величина степени окисления.

Составим электронный баланс, показав знаком "+" и "-" количество принятых и отданных в ходе взаимодействия электронов.

Fe 0 -2e=Fe 2+ .

Так как количество принятых и отданных в ходе взаимодействия электронов одинаково, нет смысла находить наименьшее общее кратное, определять стереохимические коэффициенты, ставить их в предложенную схему взаимодействия.

Для того чтобы получить за задание максимальный балл, необходимо не только записать примеры окислительно-восстановительных реакций с решением, но и выписать отдельно формулу окислителя (CuO) и восстановителя (Fe).

Второй пример с ОГЭ

Приведем еще примеры окислительно-восстановительных реакций с решением, которые могут встретиться девятиклассникам, выбравшим химию в качестве выпускного экзамена.

Допустим, предлагается расставить коэффициенты в уравнении:

Na+HCl=NaCl+H 2 .

Для того чтобы справиться с поставленной задачей, сначала важно определить у каждого простого и сложного вещества показатели степеней окисления. У натрия и водорода они будут равны нулю, так как они являются простыми веществами.

В соляной кислоте водород имеют положительную, а хлор - отрицательную степень окисления. После расстановки коэффициентов получим реакцию с коэффициентами.

Первый из ЕГЭ

Как дополнить окислительно-восстановительные реакции? Примеры с решением, встречающиеся на ЕГЭ (11 класс), предполагают дополнение пропусков, а также расстановку коэффициентов.

Например, нужно электронным балансом дополнить реакцию:

H 2 S+ HMnO 4 = S+ MnO 2 +…

Определите восстановитель и окислитель в предложенной схеме.

Как научиться составлять окислительно-восстановительные реакции? Образец предполагает использование определенного алгоритма.

Сначала во всех веществах, данных по условию задачи, необходимо поставить степени окисления.

Далее нужно проанализировать, какое вещество может стать неизвестным продуктом в данном процессе. Поскольку в здесь присутствует окислитель (в его роли выступает марганец), восстановитель (им является сера), в искомом продукте не меняются степени окисления, следовательно, это вода.

Рассуждая о том, как правильно решать окислительно-восстановительные реакции, отметим, что следующим этапом будет составление электронного соотношения:

Mn +7 принимает 3 e= Mn +4 ;

S -2 отдает 2e= S 0 .

Катион марганца является восстановителем, а анион серы - типичный окислитель. Поскольку наименьшим кратным между принятыми и отданными электронами будет 6, получаем коэффициенты: 2, 3.

Последним этапом будет постановка коэффициентов в исходное уравнение.

3H 2 S+ 2HMnO 4 = 3S+ 2MnO 2 + 4H 2 O.

Второй образец ОВР в ЕГЭ

Как правильно составить окислительно-восстановительные реакции? Примеры с решением помогут отработать алгоритм действий.

Предлагается методом электронного баланса заполнить пропуски в реакции:

PH 3 + HMnO 4 = MnO 2 +…+…

Расставляем у всех элементов степени окисления. В данном процессе окислительные свойства проявляются марганцем, входящим в состав а восстановителем должен быть фосфор, меняя свою степень окисления на положительную в фосфорной кислоте.

Согласно сделанному предположению, получаем схему реакции, затем составляем уравнение электронного баланса.

P -3 отдает 8 e и превращается в P +5 ;

Mn +7 принимает 3e, переходя в Mn +4 .

НОК будет 24, поэтому у фосфора должен присутствовать стереометрический коэффициент 3, а у марганца -8.

Ставим коэффициенты в полученный процесс, получаем:

3 PH 3 + 8 HMnO 4 = 8 MnO 2 + 4H 2 O+ 3 H 3 PO 4 .

Третий пример из ЕГЭ

Путем электронно-ионного баланса нужно составить реакцию, указать восстановитель и окислитель.

KMnO 4 + MnSO 4 +…= MnO 2 +…+ H2SO 4 .

По алгоритму расставляем у каждого элемента степени окисления. Далее определяем те вещества, что пропущены в правой и левой частях процесса. Здесь дан восстановитель и окислитель, поэтому в пропущенных соединениях степени окисления не меняются. Упущенным продуктом станет вода, а исходным соединением - сульфат калия. Получаем схему реакции, для которой составим электронный баланс.

Mn +2 -2 e= Mn +4 3 восстановитель;

Mn +7 +3e= Mn +4 2 окислитель.

Записываем коэффициенты в уравнение, суммируя атомы марганца в правой части процесса, так как он относится к процессу диспропорционирования.

2KMnO 4 + 3MnSO 4 + 2H 2 O= 5MnO 2 + K 2 SO 4 + 2H 2 SO 4 .

Заключение

Окислительно-восстановительные реакции имеют особое значение для функционирования живых организмов. Примерами ОВР являются процессы гниения, брожения, нервной деятельности, дыхания, обмена веществ.

Окисление и восстановление актуальны для металлургической и химической промышленности, благодаря таким процессам можно восстанавливать металлы из их соединений, защищать от химической коррозии, подвергать обработке.

Для составления окислительно-восстановительного процесса в органической или необходимо использовать определенный алгоритм действий. Сначала в предложенной схеме расставляют степени окисления, потом определяют те элементы, которые повысили (понизили) показатель, записывают электронный баланс.

При соблюдении последовательности действий, предложенной выше, можно без проблем справиться с заданиями, предлагаемыми в тестах.

Помимо метода электронного баланса, расстановка коэффициентов возможна также путем составления полуреакций.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ.


Например:


Zn + 2H + → Zn 2+ + H 2 ,


FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,


Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.


Окисление - это процесс отдачи электронов атомом, молекулой или ионом.


Если атом отдает свои электроны, то он приобретает положительный заряд:


Например:


Al - 3e - = Al 3+


H 2 - 2e - = 2H +


При окислении степень окисления повышается.


Если отрицательно заряженный ион (заряд -1), например Cl - , отдает 1 электрон, то он становится нейтральным атомом:


2Cl - - 2e - = Cl 2


Если положительно заряженный ион или атом отдает электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:


Fe 2+ - e - = Fe 3+


Восстановление - это процесс присоединения электронов атомом, молекулой или ионом.


Если атом присоединяет электроны, то он превращается в отрицательно заряженный ион:


Например:


Сl 2 + 2е- = 2Сl -


S + 2е - = S 2-


Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается:


Fe 3+ + e- = Fe 2+


или он может перейти в нейтральный атом:


Fe 2+ + 2e- = Fe 0


Окислителем является атом, молекула или ион, принимающий электроны. Восстановителем является атом, молекула или ион, отдающий электроны.


Окислитель в процессе реакции восстанавливается, восстановитель - окисляется.


Окисление всегда сопровождается восстановлением, и наоборот, восстановление всегда связано с окислением, что можно выразить уравнениями:


Восстановитель - е - ↔ Окислитель


Окислитель + е - ↔ Восстановитель


Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов - окисления и восстановления

Важнейшие восстановители и окислители

Восстановители


Окислители


Металлы, водород, уголь


Оксид углерода(II) CO


Сероводород H 2 S, оксид серы(IV) SO 2 , сернистая кислота H 2 SO 3 и ее соли


Иодоводородная кислота HI, бромоводородная кислота HBr, соляная кислота HCl


Хлорид олова(II) SnCl 2 , сульфат железа(II) FeSO 4 , сульфат марганца(II) MnSO 4 , сульфат хрома(III) Cr 2 (SO 4) 3


Азотистая кислота HNO 2 , аммиак NH 3 , гидразин N 2 H 4 , оксид азота(II) NO


Фосфористая кислота H 3 PO 3


Альдегиды, спирты, муравьиная и щавелевая кислоты, глюкоза


Катод при электролизе

Галогены


Перманганат калия KMnO 4 , манганат калия K 2 MnO 4 , оксид марганца(IV) MnO 2


Дихромат калия K 2 Cr 2 O 7 , хромат калия K 2 CrO 4


Азотная кислота HNO 3


Кислород O 2 , озон О 3 ,


пероксид водорода Н 2 О 2


Серная кислота H 2 SO 4 (конц.), селеновая кислота H 2 SeO 4


Оксид меди(II) CuO, оксид серебра(I) Ag 2 O, оксид свинца(IV) PbO 2


Ионы благородных металлов (Ag + , Au 3+ и др.)


Хлорид железа(III) FeCl 3


Гипохлориты, хлораты и перхлораты


Царская водка, смесь концентрированной азотной и плавиковой кислот


Анод при электролизе


Метод электронного баланса.

Для уравнивания ОВР используют несколько способов, из которых мы пока рассмотрим один - метод электронного баланса.


Напишем уравнение реакции между алюминием и кислородом:


Al + O 2 = Al 2 O 3


Пусть вас не вводит в заблуждение простота этого уравнения. Наша задача - разобраться в методе, который в будущем позволит вам уравнивать гораздо более сложные реакции.


Итак, в чем заключается метод электронного баланса? Баланс - это равенство. Поэтому следует сделать одинаковым количество электронов, которые отдает один элемент и принимает другой элемент в данной реакции. Первоначально это количество выглядит разным, что видно из разных степеней окисления алюминия и кислорода:


Al 0 + O 2 0 = Al 2 +3 O 3 -2


Алюминий отдает электроны (приобретает положительную степень окисления), а кислород - принимает электроны (приобретает отрицательную степень окисления). Чтобы получить степень окисления +3, атом алюминия должен отдать 3 электрона. Молекула кислорода, чтобы превратиться в кислородные атомы со степенью окисления -2, должна принять 4 электрона:


Al 0 - 3e- = Al +3


O 2 0 + 4e- = 2O -2


Чтобы количество отданных и принятых электронов выровнялось, первое уравнение надо умножить на 4, а второе - на 3. Для этого достаточно переместить числа отданных и принятых электронов против верхней и нижней строчки так, как показано на схеме вверху.


Если теперь в уравнении перед восстановителем (Al) мы поставим найденный нами коэффициент 4, а перед окислителем (O 2) - найденный нами коэффициент 3, то количество отданных и принятых электронов выравнивается и становится равным 12. Электронный баланс достигнут. Видно, что перед продуктом реакции Al 2 O 3 необходим коэффициент 2. Теперь уравнение окислительно-восстановительной реакции уравнено:


4Al + 3O 2 = 2Al 2 O 3


Все преимущества метода электронного баланса проявляются в более сложных случаях, чем окисление алюминия кислородом.


Например, известная всем "марганцовка" – марганцевокислый калий KMnO 4 - является сильным окислителем за счет атома Mn в степени окисления +7. Даже анион хлора Cl – отдает ему электрон, превращаясь в атом хлора. Это иногда используют для получения газообразного хлора в лаборатории:


K + Mn +7 O 4 -2 + K + Cl - + H 2 SO 4 = Cl 2 0 + Mn +2 SO 4 + K 2 SO 4 + H 2 O


Составим схему электронного баланса:


Mn +7 + 5e- = Mn +2


2Cl - - 2e- = Cl 2 0


Двойка и пятерка - главные коэффициенты уравнения, благодаря которым удается легко подобрать все другие коэффициенты. Перед Cl 2 следует поставить коэффициент 5 (или 2 × 5 = 10 перед KСl), а перед KMnO 4 - коэффициент 2. Все остальные коэффициенты привязывают к этим двум коэффициентам. Это гораздо легче, чем действовать простым перебором чисел.


2 KMnO 4 + 10KCl + 8H 2 SO 4 = 5 Cl 2 + 2MnSO 4 + 6K 2 SO 4 + 8H 2 O


Чтобы уравнять количество атомов К (12 атомов слева), надо перед K 2 SO 4 в правой части уравнения поставить коэффициент 6. Наконец, чтобы уравнять кислород и водород, достаточно перед H 2 SO 4 и H 2 O поставить коэффициент 8. Мы получили уравнение в окончательном виде.


Метод электронного баланса, как мы видим, не исключает и обыкновенного подбора коэффициентов в уравнениях окислительно-восстановительных реакций, но может заметно облегчить такой подбор.


Составление уравнения реакции меди с раствором нитрата палладия (II) . Запишем формулы исходных и конечных веществ реакции и покажем изменения степеней окисления:

из которых следует, что при восстановителе и окислителе коэффициенты равны 1. Окончательное уравнение реакции:


Cu + Pd(NO 3) 2 = Cu(NO 3) 2 + Pd


Как видно, в суммарном уравнении реакции электроны не фигурируют.


Чтобы проверить правильность составленного уравнения, подсчитываем число атомов каждого элемента в его правой и левой частях. Например, в правой части 6 атомов кислорода, в левой также 6 атомов; палладия 1 и 1; меди тоже 1 и 1. Значит, уравнение составлено правильно.


Переписываем это уравнение в ионной форме:


Cu + Pd 2+ + 2NO 3 - = Cu 2+ + 2NO 3 - + Рd


И после сокращения одинаковых ионов получим


Cu + Pd 2+ = Cu 2+ + Рd

Составление уравнения реакции взаимодействия оксида марганца (IV) с концентрированной соляной кислотой

(с помощью этой реакции в лабораторных условиях получают хлор).


Запишем формулы исходных и конечных веществ реакции:


НCl + МnО 2 → Сl 2 + MnСl 2 + Н 2 О


Покажем изменение степеней окисления атомов до и после реакции:



Эта реакция окислительно-восстановительная, так как изменяются степени окисления атомов хлора и марганца. НCl - восстановитель, MnО 2 - окислитель. Составляем электронные уравнения:



и находим коэффициенты при восстановителе и окислителе. Они соответствен­но равны 2 и 1. Коэффициент 2 (а не 1) ставится потому, что 2 атома хлора со степенью окисления -1 отдают 2 электрона. Этот коэффициент уже стоит в электронном уравнении:


2НСl + MnO 2 → Сl 2 + MnСl 2 + Н 2 О


Находим коэффициенты для других реагирующих веществ. Из электронных уравнений видно, что на 2 моль HCl приходится 1 моль MnО 2 . Однако, учитывая, что для связывания образующегося двухзарядного иона марганца нужно еще 2 моль кислоты, перед восстановителем следует поставить коэффициент 4. Тогда воды получится 2 моль. Окончательное уравнение имеет вид


4НCl + МnО 2 = Сl 2 + MnСl 2 + 2Н 2 О


Проверку правильности написания уравнения можно ограничить подсчетом числа атомов одного какого-либо элемента, например хлора: в левой части 4 и в правой 2 + 2 = 4.


Поскольку в методе электронного баланса изображаются уравнения реакций в молекулярной форме, то после составления и проверки их следует написать в ионной форме.


Перепишем составленное уравнение в ионной форме:


4Н + + 4Сl - + МnО 2 = Сl 2 + Мn 2 + + 2Сl - + 2Н 2 О


и после сокращения одинаковых ионов в обеих частях уравнения получим


4Н + + 2Сl - + МnО 2 = Сl 2 + Мn 2 + + 2Н 2 О

Составление уравнения реакции взаимодействия сероводорода с подкисленным раствором перманганата калия.

Напишем схему реакции - формулы исходных и полученных веществ:


Н 2 S + КМnO 4 + Н 2 SО 4 → S + МnSО 4 + К 2 SO 4 + Н 2 О


Затем покажем изменение степеней окисления атомов до и после реакции:



Изменяются степени окисления у атомов серы и марганца (Н 2 S - восстановитель, КМnО 4 - окислитель). Составляем электронные уравнения, т.е. изображаем процессы отдачи и присоединения электронов:



И наконец, находим коэффициенты при окислителе и восстановителе, а затем при других реагирующих веществах. Из электронных уравнений видно, что надо взять 5 моль Н 2 S и 2 моль КМnО 4 , тогда получим 5 моль атомов S и 2 моль МnSО 4 . Кроме того, из сопоставления атомов в левой и правой частях уравнения, найдем, что образуется также 1 моль К 2 SО 4 и 8 моль воды. Окончательное уравнение реакции будет иметь вид


5Н 2 S + 2КМnО 4 + ЗН 2 SО 4 = 5S + 2МnSО 4 + К 2 SО 4 + 8Н 2 О


Правильность написания уравнения подтверждается подсчетом атомов одного элемента, например кислорода; в левой части их 2 4 + 3 4 = 20 и в правой части 2 4 + 4 + 8 = 20.


Переписываем уравнение в ионной форме:


5Н 2 S + 2MnO 4 - + 6H + = 5S + 2Мn 2+ + 8Н 2 О


Известно, что правильно написанное уравнение реакции является выражением закона сохранения массы веществ. Поэтому число одних и тех же атомов в исходных веществах и продуктах реакции должно быть одинаковым. Должны сохраняться и заряды. Сумма зарядов исходных веществ всегда должна быть равна сумме зарядов продуктов реакции.


Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Классификация ОВР

Различают три основных типа окислительно-восстановительных реакций:


1) Реакции межмолекулярного окисления-восстановления
(когда окислитель и восстановитель - разные вещества);


2) Реакции диспропорционирования
(когда окислителем и восстановителем может служить одно и то же вещество);


3) Реакции внутримолекулярного окисления-восстановления
(когда одна часть молекулы выступает в роли окислителя, а другая - в роли восстановителя).>


Рассмотрим примеры реакций трех типов.


1. Реакциями межмолекулярного окисления-восстановления являются все уже рассмотренные нами в этом параграфе реакции.
Рассмотрим несколько более сложный случай, когда не весь окислитель может быть израсходован в реакции, поскольку часть его участвует в обычной - не окислительно-восстановительной реакции обмена:


Cu 0 + H + N +5 O 3 -2 = Cu +2 (N +5 O 3 -2) 2 + N +2 O -2 + H 2 O


Часть частиц NO 3 - участвует в реакции в качестве окислителя, давая оксид азота NO, а часть ионов NO 3 - в неизменном виде переходит в соединение меди Cu(NO 3) 2 . Составим электронный баланс:


Cu 0 - 2e- = Cu +2


N +5 + 3e- = N +2


Поставим найденный для меди коэффициент 3 перед Cu и Cu(NO 3) 2 . А вот коэффициент 2 следует поставить только перед NO, потому что весь имеющийся в нем азот участвовал в окислительно-восстановительной реакции. Было бы ошибкой поставить коэффициент 2 перед HNO 3 , потому что это вещество включает в себя и те атомы азота, которые не участвуют в окислении-восстановлении и входят в состав продукта Cu(NO 3) 2 (частицы NO 3 - здесь иногда называют "ионом-наблюдателем").


Остальные коэффициенты подбираются без труда по уже найденным:


3 Cu + 8HNO 3 = 3 Cu(NO 3) 2 + 2 NO + 4H 2 O


2. Реакции диспропорционирования происходят тогда, когда молекулы одного и того же вещества способны окислять и восстанавливать друг друга. Это становится возможным, если вещество содержит в своем составе атомы какого-либо элемента в промежуточной степени окисления.


Следовательно, степень окисления способна как понижаться, так и повышаться. Например:


HN +3 O 2 = HN +5 O 3 + N +2 O + H 2 O


Эту реакцию можно представить как реакцию между HNO 2 и HNO 2 как окислителем и восстановителем и применить метод электронного баланса:


HN +3 O 2 + HN +3 O 2 = HN +5 O3 + N +2 O + H 2 O


N +3 - 2e- = N +5


N +3 + e- = N +2


Получаем уравнение:


2HNO 2 + 1HNO 2 = 1 HNO 3 + 2 NO + H 2 O


Или, складывая вместе моли HNO 2:


3HNO 2 = HNO 3 + 2NO + H 2 O


Реакции внутримолекулярного окисления-восстановления происходят тогда, когда в молекуле соседствуют атомы-окислители и атомы-восстановители. Рассмотрим разложение бертолетовой соли KClO 3 при нагревании:


KCl +5 O 3 -2 = KCl - + O 2 0


Это уравнение также подчиняется требованию электронного баланса:


Cl +5 + 6e- = Cl -


2O -2 - 2e- = O 2 0


Здесь возникает сложность - какой из двух найденных коэффициентов поставить перед KClO 3 - ведь эта молекула содержит и окислитель и восстановитель?


В таких случаях найденные коэффициенты ставятся перед продуктами:


KClO 3 = 2KCl + 3O 2


Теперь ясно, что перед KClO 3 надо поставить коэффициент 2.


2KClO 3 = 2KCl + 3O 2


Внутримолекулярная реакция разложения бертолетовой соли при нагревании используется при получении кислорода в лаборатории.

Метод полуреакций



Как показывает само название, этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления с последующим суммированием их в общее уравнение.
В качестве примера составим уравнение той же реакции, которую использовали при объяснении метода электронного баланса.
При пропускании сероводорода Н 2 S через подкисленный раствор перманганата калия КМnО 4 малиновая окраска исчезает и раствор мутнеет.
Опыт показывает, что помутнение раствора происходит в результате образования элементной серы, т.е. протекания процесса:


Н 2 S → S + 2H +


Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части схемы отнять два электрона, после чего можно стрелку заменить на знак равенства:


Н 2 S - 2е - = S + 2H +


Это первая полуреакция - процесс окисления восстановителя Н 2 S.


Обесцвечивание раствора связано с переходом иона MnO 4 - (он имеет малиновую окраску) в ион Mn 2+ (практически бесцветный и лишь при большой концентрации имеет слабо-розовую окраску), что можно выразить схемой


MnO 4 - → Mn 2+


В кислом растворе кислород, входящий в состав ионов МnО 4 , вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так:


MnO 4 - + 8Н + → Мn 2+ + 4Н 2 О


Чтобы стрелку заменить на знак равенства, надо уравнять и заряды. Поскольку исходные вещества имеют семь положительных зарядов (7+), а конечные - два положительных (2+), то для выполнения условия сохранения зарядов надо к левой части схемы прибавить пять электронов:


MnO 4 - + 8Н + + 5e - = Mn 2+ + 4Н 2 О


Это вторая полуреакция - процесс восстановления окислителя, т.е. перманганат-иона


Для составления общего уравнения реакции надо уравнения полуреакций почленно сложить, предварительно уравняв числа отданных и полученных электронов. В этом случае по правилам нахождения наименьшего кратного определяют соответствующие множители, на которые умножаются уравнения полуреакций. Сокращенно запись проводится так:



И, сократив на 10Н + , окончательно получим


5Н 2 S + 2MnO 4 - + 6H + = 5S + 2Mn 2+ + 8Н 2 О


Проверяем правильность составленного в ионной форме уравнения: число атомов кислорода в левой части 8, в правой 8; число зарядов: в левой части (2-)+(6+) = 4+, в правой 2(2+) = 4+. Уравнение составлено правильно, так как атомы и заряды уравнены.


Методом полуреакций составляется уравнение реакции в ионной форме. Чтобы от него перейти к уравнению в молекулярной форме, поступаем так: в левой части ионного уравнения к каждому аниону подбираем соответствующий катион, а к каждому катиону - анион. Затем те же ионы в таком же числе записываем в правую часть уравнения, после чего ионы объединяем в молекулы:




Таким образом, составление уравнений окислительно-восстановительных реакций с помощью метода полуреакций приводит к тому результату, что и метод электронного баланса.


Сопоставим оба метода. Достоинство ыметода полуреакций по срав­нению с методом электронного баланса в том. что в нем применяются не гипотетические ионы, а реально существующие. В самом деле, в растворе нет ионов , а есть ионы .


При методе полуреакций не нужно знать степень окисления атомов.


Написание отдельных ионных уравнений полуреакций необходимо для понимания химических процессов в гальваническом элементе и при электролизе. При этом методе видна роль среды как активного участника всего процесса. Наконец, при использовании метода полуреакций не нужно знать все получающиеся вещества, они появляются в уравнении реакции при выводе его. Поэтому методу полуреакций следует отдать предпочтение и применять его при составлении уравнений всех окислительно-восстановительных реакций, протекающих в водных растворах.

Окислительно-восстановительные реакции (ОВР) - реакции, сопровождающиеся присоединением или отдачей электронов, или перераспределением электронной плотности на атомах (изменение степени окисления).

Стадии ОВР

Окисление - отдача электронов атомами, молекулами или ионами. В результате степень окисления повышается. Восстановители отдают электроны.

Восстановление - присоединение электронов. В результате степень окисления понижается. Окислители принимают электроны.

ОВР - сопряженный процесс: если есть восстановление, то есть и окисление.

Правила ОВР

Эквивалентный обмен электронов и атомный баланс.

Кислая среда

В кислой среде высвобождающиеся оксид-ионы связываются с протонами в молекулы воды; недостающие оксид-ионы поставляются молекулами воды, тогда из них высвобождаются протоны.

Там, где не хватает атомов кислорода, пишем столько молекул воды, сколько не хватает оксид-ионов.

Сера в сульфите калия имеет степень окисления +4, марганец в перманганате калия имеет степень окисления +7, серная кислота - среда протекания реакции.
Мараганец в высшей степени окисления - окислитель, следовательно, сульфит калия восстановитель.

Примечание: +4 - промежуточная степень окисления для серы, поэтому она может выступать как восстановителем, так и окислителем. С сильными окислителями (перманганат, дихромат) сульфит является восстановителем (окисляется до сульфата), с сильными восстановителями (галогенидами, халькогенидами) сульфит окислитель (восстанавливается до серы или сульфида).

Сера из степени окисления +4 переходит в +6 - сульфит окисляется до сульфата. Марганец из степени окисления +7 переходит в +2 (кислая среда) - перманганат ион восстанавливается до Mn 2+ .

2. Составляем полуреакции. Уравниваем марганец: Из перманганата высвобождаются 4 оксид-иона, которые связываются ионами водорода (кислая среда) в молекулы воды. Таким образом, 4 оксид-иона связываются с 8 протонами в 4 молекулы воды.

Другими словами, в правой части уравнения не хватает 4 кислорода, поэтому пишем 4 молекулы воды, в левой части уравнения - 8 протонов.

Семь минус два - плюс пять электронов. Можно уравнивать по общему заряду: в левой части уравнения восемь протонов минус один перманганат = 7+, в правой части марганец с зарядом 2+, вода электронейтральна. Семь минус два - плюс пять электронов. Все уравнено.

Уравниваем серу: недостающий оксид-ион в левой части уравнения поставляется молекулой воды, из которой впоследствии высвобожается два протона в правую часть.
Слева заряд 2-, справа 0 (-2+2). Минус два электрона.

Умножаем верхнюю полуреакцию на 2, нижнюю на 5.

Сокращаем протоноы и воду.

Сульфат ионы связываются с ионами калия и марганца.

Щелочная среда

В щелочной среде высвобождающиеся оксид-ионы связываются молекулами воды, образуя гидроксид-ионы (OH - группы). Недостающие оксид-ионы поставляются гидроксо-группами, которых надо брать в два раза больше.

Там, где не хватает оксид-ионов пишем гидроксо-групп в 2 раза больше, чем не хватает, с другой стороны - воду .

Пример. Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

Определяем степень окисления:

Висмут (III) с сильными окислителями (например, Cl 2) в щелочной среде проявляет восстановительные свойства (окисляется до висмута V):

Так как в левой части уравнения не хватает 3 кислородов для баланса, то пишем 6 гидроксо-групп, а справа - 3 воды.

Итоговое уравнение реакции:

Нейтральная среда

В нейтральной среде высвобождающиеся оксид-ионы связываются молекулами воды с образованием гидроксид-ионов (OH - групп). Недостающие оксид-ионы поставляются молекулами воды. Из них высвобождаются ионы H + .

Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

1. Определяем степень окисления: сера в персульфате калия имеет степень окисления +7 (является окислителем, т.к. высшая степень окисления), бром в бромиде калия имеет степень окисления -1 (является восстановителем, т.к. низшая степень окисления), вода - среда протекания реакции.

Сера из степени окисления +7 переходит в +6 - персульфат восстанавливается до сульфата. Бром из степени окисления -1 переходит в 0 - бромид ион окисляется до брома.

2. Составляем полуреакции. Уравниваем серу (коэффициент 2 перед сульфатом). Кислород уравнен.
В левой части заряд 2-, в правой части заряд 4-, присоединено 2 электрона, значит пишем +2

Уравниваем бром (коэффициент 2 перед бромид-ионом). В левой части заряд 2-, в правой части заряд 0, отдано 2 электрона, значит пишем -2

3. Суммарное уравнение электронного баланса.

4. Итоговое уравнение реакции: Сульфат ионы связываются с ионами калия в сульфат калия, коэффициент 2 перед KBr и перед K 2 SO 4 . Вода оказалась не нужна - заключаем в квадратные скобки.

Классификация ОВР

  1. Окислитель и восстановитель - разные вещества
  2. Самоокислители, самовосстановители (диспропорционирование, дисмутация) . Элемент в промежуточной степени окисления.
  3. Окислитель или восстановитель - среда для прохождения процесса
  4. Внутримолекулярное окисление-восстановление . В состав одного и того же вещества входят окислитель и восстановитель.
    Твердофазные, высокотемпературные реакции.

Количесвеннная характеристика ОВР

Стандартный окислительно-восстановительный потенциал, E 0 - электродный потенциал относительно стандартного водородного потенциала. Больше об .

Для прохождения ОВР необходимо, чтобы разность потенциалов была больше нуля, то есть потенциал окислителя должен быть больше потенциала восстановителя:

,

Например:

Чем ниже потенциал, тем сильнее восстановитель; чем выше потенциал, тем сильнее окислитель.
Окислительные свойства сильнее в кислой среде, восстановительные - в щелочной.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама