THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

КОМПТОНА ЭФФЕКТ, изменение длины волны, сопровождающее рассеяние пучка рентгеновских лучей в тонком слое вещества. Явление было известно еще за несколько лет до работы А.Комптона, который опубликовал в 1923 результаты тщательно выполненных экспериментов, подтвердивших существование этого эффекта, и одновременно предложил его объяснение. (Вскоре независимое объяснение было дано П.Дебаем, почему явление иногда называют эффектом Комптона – Дебая.)

В то время существовали два совершенно разных способа описания взаимодействия света с веществом, каждый из которых подтверждался значительным числом экспериментальных данных. С одной стороны, теория электромагнитного излучения Максвелла (1861) утверждала, что свет представляет собой волновое движение электрического и магнитного полей; с другой, квантовая теория Планка и Эйнштейна доказывала, что при некоторых условиях пучок света, проходя через вещество, обменивается с ним энергией, причем процесс обмена напоминает столкновение частиц. Важное значение работы Комптона состояло в том, что она явилась важнейшим подтверждением квантовой теории, поскольку, показав неспособность теории Максвелла объяснить экспериментальные данные, Комптон предложил простое объяснение, основанное на гипотезе квантов.

Согласно теории Планка и Эйнштейна, энергия света с частотой n передается порциями – квантами (или фотонами), энергия которых Е равна постоянной Планка h , умноженной на n . Комптон же предположил, что фотон несет импульс, который (как следует из теории Максвелла) равен энергии Е , деленной на скорость света с . При столкновении с электроном мишени рентгеновский квант передает ему часть своей энергии и импульса. В результате рассеянный квант вылетает из мишени с меньшими энергией и импульсом, а следовательно, с более низкой частотой (т.е. с большей длиной волны). Комптон указал, что каждому рассеянному кванту должен отвечать выбиваемый первичным фотоном быстрый электрон отдачи, что и наблюдается экспериментально.

Разработанная позднее Комптоном теория сводилась к следующему. Согласно формулам релятивистской механики, масса частицы, движущейся со скоростью v , равна

где m 0 – масса той же частицы в состоянии покоя (при v = 0), а c – скорость света. Полная энергия частицы дается выражением E = mc 2 , но лишь часть ее составляет кинетическая энергия, так как покоящаяся частица имеет энергию m 0 c 2 . Поэтому кинетическую энергию KE частицы можно найти, вычтя эту энергию из полной:

Импульс частицы равен произведению ее массы на скорость; следовательно,

Сохранение энергии при столкновении фотона с электроном требует, чтобы выполнялось равенство

Поскольку импульс электрона отдачи равен

баланс импульса вдоль оси AB таков:

а вдоль оси CD , перпендикулярной AB ,

где n ў – частота рассеянного кванта. Из этих трех уравнений следует, что увеличение l ў – l длины волны рассеянного кванта равно:

тогда как энергия электрона отдачи в зависимости от угла его вылета равна:

Величина h / m 0 c в формуле для Dl представляет собой универсальную постоянную, которая называется комптоновской длиной волны и равна 0,0242 Å (1 Å равен 10 –8 см). Для рентгеновских квантов с длиной волны 10 –8 см и меньше сдвиг длины волны, очевидно, весьма значителен.

Позднее на основе собственных и других экспериментальных данных Комптону удалось показать, что формулы точно предсказывают зависимость энергии кванта и электрона от углов их вылета. Поскольку при вычислениях использовались лишь законы сохранения энергии и импульса, а эти законы справедливы и в современной квантовой механике, формулы Комптона не нуждаются в каких-либо уточнениях. Однако их можно дополнить, поскольку они ничего не говорят об относительном числе квантов, рассеянных в различных направлениях. Такая теория, дающая выражение для интенсивности рассеянного излучения, была впервые разработана на основе дираковской релятивистской квантовой механики О.Клейном и Й.Нишиной в 1929, и вновь было найдено, что теория хорошо описывает эксперимент.

Значение открытия Комптона состояло в том, что впервые было показано наличие у планковских и эйнштейновских квантов света всех механических свойств, присущих прочим физическим частицам. За свое открытие А.Комптон был удостоен Нобелевской премии по физике за 1927.

КОМПТОНА ЭФФЕКТ (комптоновское рассеяние), рассеяние жёсткого (коротковолнового) электромагнитного излучения на свободных заряженных частицах, сопровождающееся изменением длины волны рассеянного излучения. Открыт А. Комптоном в 1922 году при рассеянии жёстких рентгеновских лучей в графите, атомные электроны которого, рассеивающие излучение, могут с хорошей точностью рассматриваться как свободные (поскольку частота рентгеновских лучей намного превосходит характерные частоты движения электронов в лёгких атомах). Согласно измерениям Комптона, первоначальная длина волны рентгеновского излучения λ 0 при рассеянии его на угол θ увеличивалась и оказывалась равной

где λ С - постоянная для всех веществ величина, названная комптоновской длиной волны электрона. (Более часто употребляется величина λ С = λ/2π = 3,86159268·10 -11 см) Комптона эффект резко противоречит классической волновой теории света, согласно которой длина волны электромагнитного излучения не должна меняться при его рассеянии на свободных электронах. Поэтому открытие Комптона эффекта явилось одним из важнейших фактов, указавших на двойственную природу света (смотри Корпускулярно-волновой дуализм). Объяснение эффекта, данное Комптоном и, независимо от него, П. Дебаем, заключается в том, что γ-квант с энергией Е= ћω и импульсом р = ћk, сталкиваясь с электроном, передаёт ему в зависимости от угла рассеяния часть своей энергии. (Здесь ћ - постоянная Планка, ω - циклическая частота электромагнитной волны, к - её волновой вектор |к|= ω/с, связанный с длиной волны соотношением λ = 2π|k|.) Согласно законам сохранения энергии и импульса, энергия γ-кванта, рассеянного на покоящемся электроне, равна

что полностью соответствует длине волны рассеянного излучения λ’. При этом комптоновская длина волны электрона выражается через фундаментальные постоянные: массу электрона m е, скорость света с и постоянную Планка ћ: λ С = ћ/m e c. Первым качественным подтверждением такой интерпретации Комптона эффекта было наблюдение в 1923 году Ч. Т. Р. Вильсоном электронов отдачи при облучении воздуха рентгеновскими лучами в изобретённой им камере (камере Вильсона). Подробные количественные исследования Комптона эффекта были проведены Д. В. Скобельцыным, использовавшим в качестве источника γ-квантов высоких энергий радиоактивный препарат RaC (214 Bi), а в качестве детектора - камеру Вильсона, помещённую в магнитное поле. Данные Скобельцына были в дальнейшем использованы для проверки квантовой электродинамики. В результате этой проверки шведский физик О. Клейн, японский физик Й. Нишина и И. Е. Тамм установили, что эффективное сечение Комптона эффекта убывает с ростом энергии γ-квантов (т. е. с уменьшением длины волны электромагнитного излучения), а при длинах волн, значительно превышающих комптоновскую, стремится к пределу σ Т = (8π/3)r e 2 = 0,6652459· 10 -24 см 2 , указанному Дж. Дж. Томсоном на основе волновой теории (r e = е 2 /m е с 2 - классический радиус электрона).

Комптона эффект наблюдается при рассеянии γ-квантов не только на электронах, но и на других частицах с большей массой, однако эффективное сечение при этом на несколько порядков меньше.

В случае когда γ-квант рассеивается не на покоящемся, а на движущемся (в особенности на релятивистском) электроне, возможна передача энергии от электрона γ-кванту. Это явление называют обратным эффектом Комптона.

Комптона эффект, наряду с фотоэффектом и рождением электрон-позитронных пар, является основным механизмом поглощения жёсткого электромагнитного излучения в веществе. Относительная роль Комптона эффекта зависит от атомного номера элемента и энергии γ-квантов. В свинце, например, Комптона эффект даёт основной вклад в потерю фотонов в области энергий 0,5-5 МэВ, в алюминии - в диапазоне 0,05-15 МэВ (рис.). В этой области энергий комптоновское рассеяние используется для детектирования γ-квантов и измерения их энергии.

Важную роль Комптона эффект играет в астрофизике и космологии. Например, он определяет процесс переноса энергии фотонами из центральных областей звёзд (где происходят термоядерные реакции) к их поверхности, т. е. в конечном счете, светимость звёзд и темп их эволюции. Световое давление, вызываемое рассеянием, определяет критическую светимость звёзд, начиная с которой оболочка звезды начинает расширяться.

В ранней расширяющейся Вселенной комптоновское рассеяние поддерживало равновесную температуру между веществом и излучением в горячей плазме из протонов и электронов вплоть до образования из этих частиц атомов водорода. Благодаря этому угловая анизотропия реликтового излучения даёт информацию о первичных флуктуациях вещества, приводящих к образованию крупномасштабной структуры Вселенной. Обратным Комптона эффектом объясняют существование рентгеновской компоненты фонового галактического излучения и γ-излучения некоторых космических источников. При прохождении реликтового излучения через облака горячего газа в далёких галактиках благодаря обратному Комптона эффекту возникают искажения в спектре реликтового излучения, дающие важную информацию о Вселенной (смотри Сюняева - Зельдовича эффект).

Обратный Комптона эффект позволяет получать квазимонохроматические пучки γ-квантов высокой энергии путём рассеяния лазерного излучения на встречном пучке ускоренных ультрарелятивистских электронов. В некоторых случаях обратный Комптона эффект препятствует осуществлению термоядерных реакций синтеза в земных условиях.

Лит.: Альфа-, бета- и гамма-спектроскопия. М., 1969. Вып. 1-4; Шпольский Э. В. Атомная физика. М., 1986. Т. 1-2.

Эффект Комптона является одним из краеугольных камней квантовой механики. В 1922 году физик Артур Холли Комптон объяснил увеличение длины волны х-лучей и других энергетических электромагнитных излучений, рассматривая их как совокупность дискретных импульсов или квантов электромагнитной энергии.

Эффект Комптона

Химик Гилберт Льюис (США) ввел термин «фотон» для световых квантов. Фотоны имеют свою энергию и импульсы. Они также располагают волновыми характеристиками, такими как длина волны и частота. Энергия фотонов находится в прямой пропорциональной зависимости от частоты и в обратной от ее протяженности. Эффект Комптона подразумевает сталкивание фотонов с одиночными электронами. Во время этого процесса их энергии соединяются, и под определенным углом происходит волновой разброс, размер которого зависит от исходного количества данных. Из-за соотношения между энергией и длиной волны, рассеянные фотоны обладают большей длиной, что также зависит от величины угла, через который рентгеновские лучи были направлены.

Комптоновское рассеяние

Неупругое рассеивание фотона на свободной заряженной частице заканчивается ослаблением энергии, при этом длина волны фотона увеличивается в размере. Часть этой энергии распыляется на находящиеся поблизости электроны. Существует также обратный процесс. Комптоновское рассеяние является неупругим, поскольку протяженность волны света, который был рассеян, отлична от падающего излучения. Что же предложил Комптон? Эффект в данном случае может рассматриваться как упругое сталкивание. Передвижение электронов в атомах ведет к увеличению ширины комптоновской полосы рассеянного света. Это можно объяснить тем, что для находящихся в движении электронов протяженность волны падающего излучения выглядит немного трансформированной, при этом величина перемен находится в прямой зависимости от размера и направления скорости перемещения электрона.

В честь кого эффект получил свое название

Эффект Комптона получил свое название в честь имени профессора Вашингтонского университета Артура Холли Комптона (1892—1962), физика из США, который получил Нобелевскую премию в 1927 году за свое открытие. Выпускник университета Вустера и Принстонского университета, он разработал теорию интенсивности отражения рентгеновских лучей от кристаллов в качестве средства изучения расположения электронов и атомов. В 1918 году он начал свои исследования. В 1919 году Комптон одним из первых был награжден национальной исследовательской стипендией Совета. Он был принят на стажировку в Кавендишскую лабораторию в Кембридже (Англия) и затем в Вашингтонский университет. Работая с х-лучами, он усовершенствовал свой аппарат для измерения сдвига длины волны от угла рассеивания.

Фотонно-электронное взаимодействие

Одним из важнейших понятий при изучении комптоновского рассеивания является фотон, который, согласно теории света, является квантом электромагнитной энергии и они всегда находятся в движении, и даже в вакууме есть постоянная скорость распространения света. Эффект Комптона имеет важное значение, поскольку он демонстрирует, что свет не стоит рассматривать чисто как волновой феномен. В 1923 году Комптон подарил миру науки статью, в которой он вывел математическое соотношение между сдвигом в длине волны и углом рассеивания х-лучей, предполагая, что каждый свободный рентгеновский фотон начнет взаимодействие с одной заряженной частицей. Это приводит к тому, что электрону отдается часть энергии, а фотон, содержащий оставшуюся часть энергии, испускает ее в сторону, отличную от начальной, при этом общий импульс системы сохраняется. Этот эффект является одной из трех основных форм взаимодействия фотонов и главной причиной рассеянного излучения в материале. Это происходит из-за взаимодействия рентгеновского или гамма-фотона с крайними (и, как следствие, слабо связанными между собой) валентными электронами на атомном уровне.

Фотон с точки зрения квантовой теории

В 1800-х годах волновые световые характеристики и электромагнитное излучение в целом стали абсолютно очевидными. Однако раньше ученые не придавали этим явлениям большого значения. Так было до тех пор, пока Альберт Эйнштейн не объяснил фотоэлектрический эффект и всем дал понять, что световая энергия должна была быть рассмотрена как часть квантованной теории. Как уже упоминалось выше, свет имеет волны и частицы. Это было поразительным открытием и, безусловно, за пределами обычного восприятия вещей.

Поскольку энергия и величина импульса пропорциональны его частоте, после взаимодействия фотон имеет меньшую частоту, а длина волны при этом увеличивается. Этот показатель зависит только от угла, который образуется между падающим и рассеянным лучами. Наибольший угол рассеивания позволит получить большее увеличение. Эффект используется при исследовании электронов в веществе и в производстве переменной энергии гамма-лучей. Формула Комптона для сдвига Δλ длины волны света: Δλ = λ’ − λ = λ0(1 cos θ), где λ’ - это длина волны рассеянного света, θ - это угол рассеяния фотона, и λ0 = 2.426 × 1010 см = 0.024 Ангстрем (Å). Из формулы видно, что смещение в длине волны не зависит от протяженности волны падающего излучения. Он определяется исключительно углом рассеяния фотона и является наибольшим при угле 180°.

Основные свойства фотонов

  1. Движение в свободном пространстве с постоянной скоростью.
  2. Фотоны не имеют массы.
  3. Они несут энергию и импульс, которые также связаны с частотой и длиной волны.
  4. Они могут быть уничтожены при поглощении излучения.
  5. Фотоны нейтральны с электронной точки зрения и являются одними из самых редких частиц.

Значение эффекта в различных областях науки

Комптоновское рассеяние, которое часто называют некогерентным рассеянием, имеет важное значение в атомной энергетике (радиационная защита), экспериментальной и теоретической ядерной физике, физике плазмы и атома, рентгеновской кристаллографии, физике элементарных частиц и астрофизике. Эффект Комптона дает важный инструмент для исследования в некоторых отраслях медицины, в молекулярной химии и физике твердого тела, а также использовании высокоэнергетических ускорителей для электронов. Это открытие имеет первостепенное значение для радиобиологии, потому что оно является наиболее подходящим для взаимодействия высокой энергии рентгеновских лучей с ядрами атомов в живых организмах и применяется в лучевой терапии. В физических материалах этот эффект может быть использован для зондирования волновой функции электронов в веществе.

Также Комптон открыл явление полного отражения рентгеновских лучей и их полной поляризации, которые привели к более точному определению числа электронов в атоме. Он был также первым, кто получил рентгеновские спектры прямым методом измерения длины волны рентгеновских лучей. Путем сравнения этих спектров с данными, полученными при использовании кристалла, могут быть определены абсолютные значения расстояния между атомами в кристаллической решетке. Комптон занимал пост президента американского физического общества в 1934 году. Он был канцлером Вашингтонского университета с 1946 по 1953 год. Великий физик умер в 1962 году в возрасте 69 лет.

Невероятное открытие

Основанный на квантовых представлениях о природе света эффект Комптона иллюстрирует одно из наиболее фундаментальных взаимодействий между излучением и веществом и в очень наглядной форме показывает истинную квантовую природу электромагнитного излучения. Пожалуй, наибольшее значение данного эффекта заключается в том, что он демонстрирует прямо и четко, что в дополнение к волновой природе с ее поперечными колебаниями, электромагнитное излучение также содержит частицы природы - фотоны, которые ведут себя вполне как материальные вещества при столкновениях с электронами. Это открытие привело к разработке квантовой механики и послужило основой для начала теории квантовой электродинамики, теории взаимодействия электронов с электромагнитным полем.

Комптона эффект

комптон-эффект, упругое рассеяние электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны; наблюдается при рассеянии излучения малых длин волн - рентгеновского и гамма-излучения (См. Гамма-излучение). В К. э. впервые во всей полноте проявились корпускулярные свойства излучения.

К. э. открыт в 1922 американским физиком А. Комптон ом, обнаружившим, что рассеянные в парафине рентгеновские лучи имеют большую длину волны, чем падающие. Классическая теория не могла объяснить такого сдвига длины волны. Действительно, согласно классической электродинамике (См. Электродинамика), под действием периодического электрического поля электромагнитной (световой) волны электрон должен колебаться с частотой, равной частоте поля, и, следовательно, излучать вторичные (рассеянные) волны той же частоты. Таким образом, при «классическом» рассеянии (теория которого была дана английским физиком Дж. Дж. Томсон ом и которое поэтому называют «томсоновским») длина световой волны не меняется.

Первоначальная теория К. э. на основе квантовых представлений была дана А. Комптоном и независимо П. Дебаем (См. Дебай). По квантовой теории световая волна представляет собой поток световых квантов - фотонов. Каждый фотон имеет определённую энергию E γ = hυ = hcl λ и импульс p γ = (h/ λ) n, где λ - длина волны падающего света (υ - его частота), с - скорость света, h - постоянная Планка, а n - единичный вектор в направлении распространения волны (индекс у означает фотон). К. э. в квантовой теории выглядит как упругое столкновение двух частиц - налетающего фотона и покоящегося электрона. В каждом таком акте столкновения соблюдаются законы сохранения энергии и импульса. Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается); уменьшение энергии фотона и означает увеличение длины волны рассеянного света. Электрон, ранее покоившийся, получает от фотона энергию и импульс и приходит в движение - испытывает отдачу. Направление движения частиц после столкновения, а также их энергии определяются законами сохранения энергии и импульса (рис. 1 ).

Совместное решение уравнений, выражающих равенства суммарной энергии и суммарного импульса частиц до и после столкновения (в предположении, что электрон до столкновения покоился), даёт для сдвига длины световой волны Δλ формулу Комптона:

Δλ= λ" - λ= λ о (1-cos ϑ).

Здесь λ" - длина волны рассеянного света, ϑ - угол рассеяния фотона, а λ 0 = h/mc = 2,426∙10 -10 см = 0,024 Е - так называемая комптоновская длина волны электрона (т - масса электрона). Из формулы Комптона следует, что сдвиг длины волны Δλ не зависит от самой длины волны падающего света λ. Он определяется лишь углом рассеяния фотона ϑ и максимален при ϑ = 180°, т. е. при рассеянии назад: Δλ макс. =2 λ 0 .

Из тех же уравнений можно получить выражения для энергии E e электрона отдачи («комптоновского» электрона) в зависимости от угла его вылета φ. На графически представлена зависимость энергии рассеянного фотона от угла рассеяния ϑ, а также связанная с нею зависимость E e от φ. Из рисунка видно, что электроны отдачи всегда имеют составляющую скорости по направлению движения падающего фотона (т. е. φ не превышает 90°).

Опыт подтвердил все теоретические предсказания. Таким образом, была экспериментально доказана правильность корпускулярных представлений о механизме К. э. и тем самым правильность исходных положений квантовой теории.

В реальных опытах по рассеянию фотонов веществом электроны не свободны, а связаны в атомах. Если фотоны обладают большой энергией по сравнению с энергией связи электронов в атоме (фотоны рентгеновского и γ-излучения), то электроны испытывают настолько сильную отдачу, что оказываются выбитыми из атома. В этом случае рассеивание фотонов происходит как на свободных электронах. Если же энергия фотона недостаточна для того, чтобы вырвать электрон из атома, то фотон обменивается энергией и импульсом с атомом в целом. Так как масса атома очень велика (по сравнению с эквивалентной массой фотона, равной, согласно относительности теории (См. Относительности теория), E γ /с 2), то отдача практически отсутствует; поэтому рассеяние фотона произойдет без изменения его энергии, то есть без изменения длины волны (как говорят когерентно). В тяжелых атомах слабо связаны лишь периферические электроны (в отличие от электронов, заполняющие внутренние оболочки атома) и поэтому в спектре рассеянного излучения присутствует как смещенная, комптоновская линия от рассеяния на периферических электронах, так и не смещенная, когерентная линия от рассеяния на атоме в целом. С увеличением атомного номера элемента (то есть заряда ядра) энергия связи электронов увеличивается, и относительная интенсивность комптоновской линии падает, а когерентной линии - растет.

Движение электронов в атомах приводит к уширению комптоновской линии рассеянного излучения. Это объясняется тем, что для движущихся электронов длина волны падающего света кажется несколько измененной, причем величина изменения зависит от величины и направления скорости движения электрона (см. Доплера эффект). Тщательные измерения распределения интенсивности внутри комптоновской линии, отражающего распределение электронов рассеивающего вещества по скоростям, подтвердили правильность квантовой теории, согласно которой электроны подчиняются Ферми - Дирака статистике (См. Ферми - Дирака статистика).

Рассмотренная упрощённая теория К. э. не позволяет вычислить все характеристики комптоновского рассеяния, в частности интенсивность рассеяния фотонов под разными углами. Полную теорию К. э. даёт Квантовая электродинамика . Интенсивность комптоновского рассеяния зависит как от угла рассеяния, так и от длины волны падающего излучения. В угловом распределении рассеянных фотонов наблюдается асимметрия: больше фотонов рассеивается по направлению вперёд, причём эта асимметрия увеличивается с энергией падающих фотонов. Полная интенсивность комптоновского рассеяния уменьшается с ростом энергии первичных фотонов; это означает, что вероятность комптоновского рассеяния фотона, пролетающего через вещество, убывает с его энергией. Такая зависимость интенсивности от E γ определяет место К. э. среди других эффектов взаимодействия излучения с веществом, ответственных за потери энергии фотонами при их пролёте через вещество. Например, в свинце (в статье Гамма-излучение) К. э. даёт главный вклад в энергетические потери фотонов при энергиях порядка 1-10 Мэв (в более лёгком элементе - алюминии - этот диапазон составляет 0,1-30 Мэв ); ниже этой области с ним успешно конкурирует Фотоэффект , а выше - рождение пар (см. Аннигиляция и рождение пар).

Комптоновское рассеяние широко используется в исследованиях γ-излучения ядер, а также лежит в основе принципа действия некоторых Гамма-спектрометр ов.

К. э. возможен не только на электронах, но и на других заряженных частицах, например на протонах, но из-за большой массы протона отдача его заметна лишь при рассеянии фотонов очень высокой энергии.

Двойной К. э. - образование двух рассеянных фотонов вместо одного первичного при его рассеянии на свободном электроне. Существование такого процесса следует из квантовой электродинамики; впервые он наблюдался в 1952. Его вероятность примерно в 100 раз меньше вероятности обычного К. э.

Обратный комптон-эффект. Если электроны, на которых рассеивается электромагнитное излучение, являются релятивистскими (то есть движутся со скоростями, близкими к скорости света), то при упругом рассеянии длина волны излучения будет уменьшаться, то есть энергия (и импульс) фотонов будет увеличиваться за счет энергии (и импульса) электронов. Это явление называют обратным К. э. Обратный К. э. часто привлекают для объяснения механизма излучения космических рентгеновских источников, образования рентгеновской компоненты фонового галактического излучения, трансформации плазменных волн в электромагнитные волны высокой частоты.

Лит.: Борн М., Атомная физика, пер. с англ.. 3 изд., М., 1970; Гайтлер В., Квантовая теория излучения, [пер. с англ.], М., 1956.

В. П. Павлов.

Рис. 1. Упругое столкновение фотона и электрона в Комптона эффекте. До столкновения электрон покоился; p ν и p ν " - налетающего и рассеянного фотонов, - импульс отдачи (ν

Рис. 2. Зависимость энергии рассеянного фотона E " γ от угла рассеяния ϑ (для удобства изображена только верхняя половина симметричной кривой) и энергии электрона отдачи E e от угла вылета φ (нижняя половина кривой). Величины, относящиеся к одному акту рассеяния, помечены одинаковыми цифрами. Векторы, проведённые из точки О, в которой произошло столкновение фотона энергии E γ с покоящимся электроном, до соответствующих точек этих кривых, изображают состояние частиц после рассеяния: величины векторов дают энергию частиц, а углы, которые образуют векторы с направлением падающего фотона, определяют угол рассеяния фотона ϑ и угол вылета электрона отдачи φ. (График вычерчен для случая рассеяния «жёстких» рентгеновских лучей с длиной волны hc/E γ = λ 0 =0,024Å.

Рис. 3. График зависимости полной интенсивности комптоновского рассеяния σ от энергии фотона E γ (в единицах полной интенсивности классич. рассеяния); стрелкой указана энергия, при которой начинается рождение электрон-позитронных пар.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Комптона эффект" в других словарях:

    - (комптон эффект), упругое рассеяние эл. магн. излучения на свободных (или слабо связанных) эл нах, сопровождающееся увеличением длины волны; наблюдается при рассеянии излучения малых длин волн рентгеновского и g излучений. Открыт в 1922 амер.… … Физическая энциклопедия

    Открытое А. Комптоном (1922) упругое рассеяние электромагнитного излучения малых длин волн (рентгеновского и гамма излучения) на свободных электронах, сопровождающееся увеличением длины волны l. Комптона эффект противоречит классической теории,… … Большой Энциклопедический словарь

    Квантовая механика Принцип неопределённости Введение... Математическая формулировка... Основа … Википедия

    Открытое А. Комптоном (1922) упругое рассеяние электромагнитного излучения малых длин волн (рентгеновского и гамма излучения) на свободных электронах, сопровождающееся увеличением длины волны λ. Комптона эффект противоречит классической теории,… … Энциклопедический словарь

    Изменение длины волны, сопровождающее рассеяние пучка рентгеновских лучей в тонком слое вещества. Явление было известно еще за несколько лет до работы А. Комптона, который опубликовал в 1923 результаты тщательно выполненных экспериментов,… … Энциклопедия Кольера

    - (А. Н. Compton, 1892 1962, амер. физик) рассеяние энергии электромагнитного излучения на свободных или слабо связанных электронах; К. э. обусловливает ослабление рентгеновского или гамма излучения при прохождении через ткани организма … Большой медицинский словарь

    Открытое А. Комптоном (1922) упругое рассеяние зл. магн. излучения малых длин волн (рентгеновского и гамма излучения) на свободных электронах, сопровождающееся увеличением длины волны Л. К. э. противоречит классич. теории, согласно к рой при… … Естествознание. Энциклопедический словарь Естествознание. Энциклопедический словарь

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Комптон, исследуя рассеяние монохроматического ренттеновского излучения веществами с легкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

Опыты показали, что разность Δλ=λ΄-λ не зависит от длины волны λ падающего излучения и природы рассеивающего вещества, а определяется только углом рассеяния θ :

Δλ=λ΄-λ = 2λ с sin 2 , (32.9)

где λ΄ - длина волны рассеянного излучения, λ с - комптоновская длина волны
(при рассеянии фотона на электроне λ с =2,426 пм).

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и γ -излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны.

Этот Эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии меняться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Эффект Комптона - результат упругого столкновения рентгеновских фотонов со свободными электронами вещества (для легких атомов электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными). В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения.

Рассмотрим упругое столкновение двух частиц (рис.32.3) – налетающего фотона, обладающего импульсом р ф = hν/с и энергией Е ф = , с покоящимся свободным электроном (энергия покоя W 0 = m 0 с 2 ; m 0 – масса покоя электрона). Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает увеличение длины волны рассеянного излучения. При каждом столкновении выполняются законы сохранения энергии и импульса.



Согласно закону сохранения энергия

W 0 + Е ф = W+ Е ф " , (32.10)

а согласно закону сохранения импульса

р ф = р е + р ф " , (32.11)

Где W 0 = m 0 с 2 – энергия электрона до столкновения, Е ф = – энергия налетающего фотона, W = - энергия электрона после столкновения, Е ф " = hν" – энергия рассеянного фотона. Подставим в выражение (32.10) значения величин и представив (32.11) в соответствии с рис. 32.3, получим

m 0 с 2 + hν = + hν" ,(32.12)

2 vv" соsθ . (32.13)

Решая уравнения (32.12) и (32.13) совместно, получим

m 0 с 2 (ν- ν" ) = hvν" (1соsθ ). (32.14)

Поскольку v = с/λ, v" = с/λ" и Δλ=λ΄-λ, получим

Δλ= sin 2 . (32.15)

Выражение (32.15) есть не что иное, как полученная экспериментально Комптоном формула (32.9).

Наличие в составе рассеянного излучения несмещенной линии (излучения первоначальной длины волны) можно объяснить следующим образом. При рассмотрении механизма рассеяния предполагалось, что фотон соударяется лишь со свободным электроном. Однако если электрон сильно связан с атомом, как это имеет место для внутренних электронов (особенно в тяжелых атомах), то фотон обменивается энергией и импульсом с атомом в целом. Так как масса атома по сравнению с массой электрона очень велика, то атому передается лишь ничтожная часть энергии фотона. Поэтому в данном случае длина волны рассеянного излучения практически не будет отличаться от длины волны падающего излучения.

Эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором - поглощается. Рассеяние происходит при взаимодействии фотона со свободным электроном, а фотоэффект - со связанными электронами. При столкновении фотона со свободным электроном не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т. е. эффект Комптона.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама