THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Ионная связь – возникает между разноимённо заряженными частицами – ионами в результате действия электростатических сил притяжения.

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором. Атом щелочного металла легко теряет электрон, а атом галогена - приобретает. В результате этого возникает катион натрия и хлорид-ион. Они образуют соединение за счет электростатического притяжения между ними.

Взаимодействие между катионами и анионами не зависит от направления, поэтому о ионной связи говорят как о ненаправленной. Каждый катион может притягивать любое число анионов, и наоборот. Вот почему ионная связь является ненасыщенной. Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла. Поэтому "молекулой" ионного соединения следует считать весь кристалл.

Для возникновения ионной связи необходимо, чтобы сумма значений энергии ионизации Ei (для образования катиона) и сродства к электрону Ae (для образования аниона) должна быть энергетически выгодной. Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует. Даже в тех соединениях, которые обычно относят к ионным, не происходит полного перехода электронов от одного атома к другому; электроны частично остаются в общем пользовании. Так, связь во фториде лития на 80% ионная, а на 20% - ковалентная. Поэтому правильнее говорить о степени ионности (полярности) ковалентной химической связи. Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной. При большей разности соединение можно считать ионным.

Ионной моделью химической связи широко пользуются для описания свойств многих веществ, в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами. Это обусловлено простотой описания таких соединений: считают, что они построены из несжимаемых заряженных сфер, отвечающих катионам и анионам. При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Природа металлической связи. Строение кристаллов металлов.

1. с. 71–73; 2. с. 143–147; 4. с. 90–93;8. с. 138–144; 3. с. 130–132.

Ионной химической связью называется связь, которая образуется между катионами и анионами в результате их электростатического взаимодействия. Ионную связь можно рассматривать как предельный случай ковалентной полярной связи, образованной атомами с сильно различающимися значениями электроотрицательности.

При образовании ионной связи происходит значительное смещение общей пары электронов к более электроотрицательному атому, который таким образом приобретает отрицательный заряд и превращается в анион. Другой атом, лишившись своего электрона, образует катион. Ионная связь образуется только между атомными частицами таких элементов, которые сильно отличаются по своей электроотрицательности (Δχ ≥ 1,9).

Ионная связь характеризуется ненаправленностью в пространстве и ненасыщаемостью . Электрические заряды ионов обусловливают их притяжение и отталкивание и определяют стехиометрический состав соединения.

В целом ионное соединение представляет собой гигантскую ассоциацию ионов с противоположными зарядами. Поэтому химические формулы ионных соединений отражают лишь простейшее соотношение между числами атомных частиц, образующих такие ассоциации.

Металлическая связь – в заимодействие, удерживающее атомные частицы металлов в кристаллах.

Природа металлической связи подобна ковалентной связи: оба типа связи основаны на обобществлении валентных электронов. Однако в случае ковалентной связи обобщаются валентные электроны только двух соседних атомов, в то время как при образовании металлической связи в обобществлении этих электронов принимают участие сразу все атомы. Невысокие энергии ионизации металлов обусловливают легкость отрыва валентных электронов от атомов и перемещение по всему объему кристалла. Благодаря свободному перемещению электронов металлы обладают высокой электрической проводимостью и теплопроводностью.

Таким образом, относительно небольшое количество электронов обеспечивает связывание всех атомов в кристалле металла. Связь такого типа, в отличие от ковалентной, является нелокализованной и ненаправленной .

7. Межмолекулярное взаимодействие . Ориентационное, индукционное и дисперсионное взаимодействие молекул. Зависимость энергии межмолекулярного взаимодействия от величины дипольного момента, поляризуемости и размера молекул. Энергия межмолекулярного взаимодействия и агрегатное состояние веществ. Характер изменения температур кипения и плавления простых веществ и молекулярных соединений р-элементов IV-VII групп.

1. с. 73–75; 2. с. 149–151; 4. с. 93–95; 8. с. 144–146; 11. с. 139–140.

Хотя молекулы в целом электронейтральны, между ними осуществляется межмолекулярное взаимодействие.

Силы сцепления, действующие между одиночными молекулами и приводящие вначале к образованию молекулярной жидкости, а затем молекулярных кристаллов, получили название межмолекулярных сил , или сил Ван-дер-Ваальса .

Межмолекулярное взаимодействие, как и химическая связь, имеет электростатическую природу , но, в отличие от последней, является очень слабым; проявляется на значительно больших расстояниях и характеризуется отсутствием насыщаемости.

Различают три типа межмолекулярного взаимодействия. К первому типу относится ориентационное взаимодействие полярных молекул. При сближении полярные молекулы ориентируются друг относительно друга в соответствии с знаками зарядов на концах диполей. Чем более полярны молекулы, тем прочнее ориентационное взаимодействие. Его энергия определяется, прежде всего, величиной электрических моментов диполей молекул (т. е. их полярностью).

Индукционное взаимодействие это электростатическое взаимодействие между полярными и неполярными молекулами .

В неполярной молекуле под воздействием электрического поля полярной молекулы возникает «наведенный» (индуцированный) диполь, который притягивается к постоянному диполю полярной молекулы. Энергия индукционного взаимодействия определяется электрическим моментом диполя полярной молекулы и поляризуемостью неполярной молекулы.

Дисперсионное взаимодействие возникает в результате взаимного притяжения так называемых мгновенных диполей . Диполи такого типа возникают в неполярных молекулах в любой момент времени вследствие несовпадения электрических центров тяжести электронного облака и ядер, вызванного их независимыми колебаниями.

Относительная величина вклада отдельных составляющих в общую энергию межмолекулярного взаимодействия зависит от двух основных электростатических характеристик молекулы – ее полярности и поляризуемости, которые, в свою очередь, определяются размерами и структурой молекулы.

8. Водородная связь . Механизм образования и природа водородной связи. Сравнение энергии водородной связи с энергией химической связи и энергией межмолекулярного взаимодействия. Межмолекулярные и внутримолекулярные водородные связи. Характер изменения температур плавления и кипения гидридов р-элементов IV-VII групп. Значение водородных связей для природных объектов. Аномальные свойства воды.

1. с. 75–77; 2. с. 147–149; 4. с. 95–96; 11. с. 140–143.

Одной из разновидностей межмолекулярного взаимодействия является водородная связь . Она осуществляется между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом Х другой молекулы:

Х δ- ─Н δ+ Х δ- ─Н δ+ ,

где Х – атом одного из наиболее электроотрицательных элементов – F, O или N, а символ – условное обозначение водородной связи.

Образование водородной связи обусловлено, прежде всего, тем, что у атома водорода имеется только один электрон, который при образовании полярной ковалентной связи с атомом Х смещается в его сторону. На атоме водорода возникает высокий положительный заряд, что в сочетании с отсутствием внутренних электронных слоев в атоме водорода позволяет другому атому сближаться с ним до расстояний, близких к длинам ковалентных связей.

Таким образом, водородная связь образуется в результате взаимодействия диполей. Однако в отличие от обычного диполь-дипольного взаимодействия, механизм возникновения водородной связи обусловлен и донорно-акцепторным взаимодействием, где донором электронной пары является атом Х одной молекулы, а акцептором – атом водорода другой.

Водородная связь обладает свойствами направленности и насыщаемости. Наличие водородной связи существенно влияет на физические свойства веществ. Например, температуры плавления и кипения HF, H 2 O и NH 3 выше, чем у гидридов других элементов тех же групп. Причиной аномального поведения является наличие водородных связей, на разрыв которых требуется дополнительная энергия.

Лишь немногие химические элементы могут существовать в индивидуальном виде в виде газов. Эти элементы называются инертными газами. Остальные химические элементы будут взаимодействовать друг с другом или с другими атомами, образуя соединения. Причиной образования этих химических соединений является химическая связь. Химическая связь обусловлена электростатическим взаимодействием заряженных частей атома: ядра и электронной оболочки. Доказано, что в образовании химической связи принимают участие электроны внешней электронной оболочки. Такие электроны называются валентными.

- Способность атома к образованию химической связи называется валентностью .

Электроны в атомах располагаются на энергетических уровнях. Полностью заполненным энергетическим уровнем обладают электроны VIII-А группы - благородные или инертные газы. Учитывая химическую пассивность инертных газов и строение атомов соответствующих элементов, приходим к такому выводу: внешняя 8-электронаая оболочка является для атома выгодной и устойчивой. Её часто называют электронным октетом. Поскольку электронная конфигурация благородного газа очень устойчива, (ns2np6) то достичь её стремятся атомы других элементов. Сделать это они могут, отдав электроны, приняв или обобществив свои электроны с электронами других атомов.

Способы образования химической связи различны, поэтому и выделяют несколько типов химической связи:

Ионная связь.

Каждый химический элемент обладает своей способностью притягивать к себе внешние, чужие электроны.

- Способность атома притягивать к себе электроны называется электроотрицательностью.

Рис. 3. Ионные соединения

Рис. 4. Кристаллическая решетка фторида кальция

Вещества, образованные из ионов, называются ионными соединениями. Рис.3. Соединения, образованные ионной связью при обычных условиях твёрдые вещества с высокой температурой плавления и кипения. Это хрупкие вещества. Они образуют ионную кристалличекую решетку. В узлах кристаллической решетки находятся ионы. На рисунках показаны кристалличекие решетки хлорида натрия и фторида кальция. Рис. 4,5.

Рис. 5. Кристаллическая решетка хлорида натрия

Таким образом, можно сделать вывод, что соединения двух элементов, расположенных в противоположных концах одного (или разных) периодов, имеют преимущественно ионный характер связи, но по мере сближения элементов в пределах периода ионный характер их соединений уменьшается. В большинстве случаев нельзя сказать, что соединение является полностью (или чисто) ионным либо полностью (или чисто) ковалентным. Однако можно утверждать, что некоторые соединения являются преимущественно ионными, а другие соединения преимущественно ковалентными.

Хорошими примерами ионных соединений являются хлориды и оксиды. Хлориды и оксиды элементов, расположенных в левой части периодической таблицы, как правило, имеют преимущественно ионный характер.

Источники

http://www.youtube.com/watch?t=10&v=LtAgb6LDUeQ

источник презентации - http://ppt4web.ru/khimija/ionnaja-khimicheskaja-svjaz.html

Конспект http://interneturok.ru/ru/school/chemistry/9-klass

Электроны от одного атома могут полностью перейти к другому. Такое перераспределение зарядов ведет к образованию положительно и отрицательно заряженных ионов (катионов и анионов). Между ними возникает особый тип взаимодействия — ионная связь. Рассмотрим подробнее способ ее образования, строение и свойства веществ.

Электроотрицательность

Атомы отличаются по электрооотрицательности (ЭО) — способности притягивать к себе электроны с валентных оболочек других частиц. Для количественного определения используется предложенная Л. Поллингом шкала относительной электроотрицательности (безразмерная величина). Сильнее, чем у других элементов, выражена способность притягивать к себе электроны у атомов фтора, его ЭО — 4. В шкале Поллинга сразу же за фтором следуют кислород, азот, хлор. Значения ЭО водорода и других типичных неметаллов равны или близки к 2. Из металлов большинство обладает электроотрицательностью от 0,7 (Fr) до 1,7. Существует зависимость ионности связи от разности ЭО химических элементов. Чем она больше, тем выше вероятность того, что возникнет ионная связь. Этот тип взаимодействия чаще встречается при разности ЭО=1,7 и выше. Если значение меньше, то соединения относятся к полярным ковалентным.

Энергия ионизации

Для отрыва слабо связанных с ядром внешних электронов необходима энергия ионизации (ЭИ). Единица изменения этой физической величины — 1 электрон-вольт. Существуют закономерности изменения ЭИ в рядах и столбцах периодической системы, зависящие от возрастания заряда ядра. В периодах слева направо энергия ионизации увеличивается и приобретает наибольшие значения у неметаллов. В группах она уменьшается сверху вниз. Основная причина — увеличение радиуса атома и расстояния от ядра до внешних электронов, которые легко отрываются. Возникает положительно заряженная частица — соответствующий катион. По величине ЭИ можно судить о том, возникает ли ионная связь. Свойства также зависят от энергии ионизации. Например, металлы щелочные и щелочноземельные обладают небольшими значениями ЭИ. У них ярко выражены восстановительные (металлические) свойства. Инертные газы в химическом отношении малоактивны, что обусловлено их высокой энергией ионизации.

Сродство к электрону

В химических взаимодействиях атомы могут присоединять электроны с образованием отрицательной частицы — аниона, процесс сопровождается выделением энергии. Соответствующая физическая величина — это сродство к электрону. Единица измерения такая же, как энергии ионизации (1 электрон-вольт). Но ее точные значения известны не для всех элементов. Галогены обладают наибольшим сродством к электрону. На внешнем уровне атомов элементов — 7 электронов, не хватает только одного до октета. Сродство к электрону у галогенов высокое, они обладают сильными окислительными (неметаллическими) свойствами.

Взаимодействия атомов при образовании ионной связи

Атомы, имеющие незавершенный внешний уровень, находятся в неустойчивом энергетическом состоянии. Стремление к достижению стабильной электронной конфигурации — основная причина, которая приводит к образованию химических соединений. Процесс обычно сопровождается выделением энергии и может привести к молекулам и кристаллам, отличающимся по строению и свойствам. Сильные металлы и неметаллы значительно различаются между собой по ряду показателей (ЭО, ЭИ и сродству к электрону). Для них больше подходит такой тип взаимодействия, как ионная химическая связь, при которой перемещается объединяющая молекулярная орбиталь (общая электронная пара). Считается, что при образовании ионов металлы полностью передают электроны неметаллам. Прочность возникшей связи зависит от работы, необходимой для разрушения молекул, составляющих 1 моль исследуемого вещества. Эта физическая величина известна как энергия связи. Для ионных соединений ее значения составляют от нескольких десятков до сотен кДж/моль.

Образование ионов

Атом, отдающий свои электроны при химических взаимодействиях, превращается в катион (+). Принимающая частица — это анион (-). Чтобы выяснить, как будут вести себя атомы, возникнут ли ионы, нужно установить разность их ЭО. Проще всего провести такие расчеты для соединения из двух элементов, например, хлорида натрия.

Натрий имеет всего 11 электронов, конфигурация внешнего слоя — 3s 1 . Для его завершения атому легче отдать 1 электрон, чем присоединить 7. Строение валентного слоя хлора описывает формула 3s 2 3p 5 . Всего у атома 17 электронов, 7 — внешних. Не хватает одного для достижения октета и стабильной структуры. Химические свойства подтверждают предположения о том, что атом натрия отдает, а хлор принимает электроны. Возникают ионы: положительный (катион натрия) и отрицательный (анион хлора).

Ионная связь

Теряя электрон, натрий приобретает положительный заряд и устойчивую оболочку атома инертного газа неона (1s 2 2s 2 2p 6). Хлор в результате взаимодействия с натрием получает дополнительный отрицательный заряд, а ион повторяет строение атомной оболочки благородного газа аргона (1s 2 2s 2 2p 6 3s 2 3p 6). Приобретенный электрический заряд называется зарядом иона. Например, Na + , Ca 2+ , Cl - , F - . В составе ионов могут находиться атомы нескольких элементов: NH 4 + , SO 4 2- . Внутри таких сложных ионов частицы связаны по донорно-акцепторному или ковалентному механизму. Между разноименно заряженными частицами возникает электростатическое притяжение. Его величина в случае ионной связи пропорциональна зарядам, а с увеличением расстояния между атомами оно слабеет. Характерные признаки ионной связи:

  • сильные металлы реагируют с активными неметаллическими элементами;
  • электроны переходят от одного атома к другому;
  • возникшие ионы обладают стабильной конфигурацией внешних оболочек;
  • между противоположно заряженными частицами возникает электростатическое притяжение.

Кристаллические решетки ионных соединений

В химических реакциях металлы 1-й, 2-й и 3-й групп периодической системы обычно теряют электроны. Образуются одно-, двух- и трехзарядные положительные ионы. Неметаллы 6-й и 7-й групп обычно присоединяют электроны (исключение — реакции с фтором). Возникают одно- и двухзарядные отрицательные ионы. Затраты энергии на эти процессы, как правило, компенсируются, при создании кристалла вещества. Ионные соединения обычно находятся в твердом состоянии, образуют структуры, состоящие из противоположно заряженных катионов и анионов. Эти частицы притягиваются и образуют гигантские кристаллические решетки, в которых положительные ионы окружены отрицательными частицами (и наоборот). Суммарный заряд вещества равен нулю, ведь общее число протонов уравновешивается количеством электронов всех атомов.

Свойства веществ с ионной связью

Для ионных кристаллических веществ характерны высокие температуры кипения и плавления. Обычно эти соединения являются термостойкими. Следующую особенность можно обнаружить при растворении таких веществ в полярном растворителе (воде). Кристаллы легко разрушаются, а ионы переходят в раствор, который обладает электрической проводимостью. Ионные соединения также разрушаются при расплавлении. Появляются свободные заряженные частицы, значит, расплав проводит электрический ток. Вещества с ионной связью являются электролитами — проводниками второго рода.

Относятся к группе ионных соединений оксиды и галогениды щелочных и щелочноземельных металлов. Практически все они находят широкое применение в науке, технике, химическом производстве, металлургии.











Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока :

  • Сформировать понятие об химических связях на примере ионной связи. Добиться понимания образования ионной связи как крайнего случая полярной.
  • Обеспечить в ходе урока усвоение следующих основных понятий: ионы (катион, анион), ионная связь.
  • Развивать умственную деятельность учащихся через создание проблемной ситуации при изучении нового материала.

Задачи:

  • научить распознавать виды химической связи;
  • повторить строение атома;
  • исследовать механизм образования ионной химической связи;
  • научить составлять схемы образования и электронные формулы ионных соединений, уравнения реакций с обозначением перехода электронов.

Оборудование : компьютер, проектор, мультимедийный ресурс, периодическая система химических элементов Д.И. Менделеева, таблица «Ионная связь».

Тип урока: Формирование новых знаний.

Вид урока: Мультимедиа урок.

Х од урока

I. Организационный момент .

II. Проверка домашнего задания .

Учитель: Как атомы могут принимать устойчивые электронные конфигурации? Каковы cпособы образования ковалентной связи?

Ученик: Полярная и неполярная ковалентные связи образованы по обменному механизму. К обменному механизму относят случаи, когда в образовании электронной пары от каждого атома участвует по одному электрону. Например, водород: (слайд 2)

Связь возникает благодаря образованию общей электронной пары за счет объединения неспаренных электронов. У каждого атома есть по одному s-электрону. Атомы Н равноценны и пары одинаково принадлежат обоим атомам. Поэтому же принципу происходит образование общих электронных пар (перекрывание р-электронных облаков) при образовании молекулы F 2 . (слайд 3)

Запись H· означает, что у атома водорода на внешнем электронном слое находится 1 электрон. Запись показывает, что на внешнем электронном слое атома фтора находится 7 электронов.

При образовании молекулы N 2 . Образуются 3 общие электронные пары. Перекрываются р-орбитали. (слайд 4)

Связь называется неполярная.

Учитель: Мы сейчас рассмотрели случаи, когда образуются молекулы простого вещества. Но вокруг нас множество веществ, сложного строения. Возьмем молекулу фтороводорода. Как в этом случае происходит образование связи?

Ученик: При образовании молекулы фтороводорода перекрывается орбиталь s-электрона водорода и орбиталь р-электрона фтора Н-F. (слайд 5)

Связывающая электронная пара смещена к атому фтора, в результате чего образуется диполь . Связь называется полярная .

III. Актуализация знаний .

Учитель: Химическая связь возникает вследствие изменений, которые происходят с наружными электронными оболочками соединяющихся атомов. Это возможно потому, что наружные электронные слои не завершены у элементов, кроме инертных газов. Химическая связь объясняется стремлением атомов приобрести устойчивую электронную конфигурацию, подобную конфигурации «ближайшего» к ним инертного газа.

Учитель: Записать схему электронного строения атома натрия (у доски). (слайд 6)

Ученик: Атому натрия для достижения устойчивости электронной оболочки необходимо либо отдать один электрон, либо принять семь. Натрий легко отдаст свой далекий от ядра и слабо связанный с ним электрон.

Учитель: Составить схему отдачи электрона.

Nа° - 1ē → Nа+ = Ne

Учитель: Записать схему электронного строения атома фтора (у доски).

Учитель: Как добиться завершения заполнения электронного слоя?

Ученик: Атому фтора для достижения устойчивости электронной оболочки необходимо либо отдать семь электронов, либо принять один. Энергетически выгоднее фтору принять электрон.

Учитель: Составить схему приема электрона.

F° + 1ē → F- = Ne

IV. Изучение нового материал.

Учитель обращается с вопросом к классу, в котором ставится задача урока:

Возможны ли другие варианты, при которых атомы могут принимать устойчивые электронные конфигурации? Каковы пути образования таких связей?

Сегодня мы рассмотрим один из видов связей – ионную связь. Сопоставим строение электронных оболочек уже названных атомов и инертных газов.

Беседа с классом.

Учитель: Какой заряд имели атомы натрия и фтора до реакции?

Ученик: Атомы натрия и фтора электронейтральны, т.к. заряды их ядер уравновешиваются электронами, вращающимися вокруг ядра.

Учитель: Что происходит между атомами при отдаче и принятии электронов?

Ученик: Атомы приобретают заряды.

Учитель дает пояснения: В формуле иона дополнительно записывают его заряд. Для этого используют верхний индекс. В нем цифрой указывают величину заряда (единицу не пишут), а потом – знак (плюс или минус). Например, ион Натрия с зарядом +1 имеет формулу Na + (читается «натрий-плюс»), ион Фтора с зарядом -1 – F - («фтор-минус»), гидроксид-ион с зарядом -1 – ОН - («о-аш-минус»), карбонат-ион с зарядом -2 – CO 3 2- («цэ-о-три-два-минус»).

В формулах ионных соединений сначала записывают, не указывая зарядов, положительно заряженные ионы, а потом - отрицательно заряженные. Если формула правильная, то сумма зарядов всех ионов в ней равна нулю.

Положительно заряженный ионназывается катионом ,аотрицательно заряженный ион- анионом.

Учитель: Записываем определение в рабочие тетради:

Ион - это заряженная частица, в которую превращается атом в результате принятия или отдачи электронов.

Учитель: Как определить величину заряда иона кальция Ca 2+ ?

Ученик: Ио́н - электрически заряженная частица, образующаяся в результате потери или присоединения одного или нескольких электронов атомом. У кальция на последнем электронном уровне находятся два электрона, ионизация атома кальция происходит при отдаче двух электронов. Ca 2+ - двухзарядный катион.

Учитель: Что происходит с радиусами этих ионов?

При переходе электронейтрального атома в ионное состояние размер частицы сильно изменяется. Атом, отдавая свои валентные электроны, превращается при этом в более компактную частицу - катион. Например, при переходе атома натрия в катион Na+, имеющий, как указано выше, структуру неона, радиус частицы сильно уменьшается. Радиус аниона всегда больше радиуса соответствующего электронейтрального атома.

Учитель: Что происходит с разноименно заряженными частицами?

Ученик: Разноименно заряженные ионы натрия и фтора, возникающие в результате перехода электрона от атома натрия к атому фтора, взаимно притягиваются и образуют фторид натрия. (слайд 7)

Nа + + F - = NаF

Рассмотренная нами схема образования ионов показывает, как между атомом натрия и атомом фтора образуется химическая связь, которую называют ионной.

Ионная связь – химическая связь, образованная электростатическим притяжением друг к другу разноименно заряженных ионов.

Соединения, которые при этом образуются, называют ионными соединениями.

V. Закрепление нового материала .

Задания для закрепления знаний и умений

1. Сравните строение электронных оболочек атома кальция и катиона кальция, атома хлора и хлорид - аниона:

Прокомментируйте схему образования ионной связи в хлориде кальция:

2. Для выполнения данного задания необходимо разделиться на группы по 3–4 человека. Каждый участник группы рассматривает один пример и результаты представляет всей группе.

Ответ учащихся:

1. Кальций – это элемент главной подгруппы II группы, металл. Его атому легче отдать два внешних электрона, чем принять недостающие шесть:

2. Хлор – это элемент главной подгруппы VII группы, неметалл. Его атому легче принять один электрон, которого ему не хватает до завершения внешнего уровня, чем отдать семь элект­ронов с внешнего уровня:

3. Сначала найдем наименьшее общее кратное между зарядами образовавшихся ионов, оно равно 2 (2x1). Затем определим, сколько атомов кальция нужно взять, чтобы они отдали два электрона, то есть надо взять один атом Са и два атома CI.

4. Схематично образование ионной связи между атомами кальция и хлора можно записать: (слайд 8)

Са 2+ + 2СI - → СаСI 2

Задания для самоконтроля

1. На основе схемы образования химического соединения составьте уравнение химической реакции: (слайд 9)

2. На основе схемы образования химического соединения составьте уравнение химической реакции: (слайд 10)

3. Дана схема образования химического соединения: (слайд 11)

Выберите пару химических элементов, атомы которых могут взаимодействовать в соответствии с этой схемой:

а) Na и O ;
б) Li и F ;
в) K и O ;
г) Na и F

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама