THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Системы, у которых входная и выходная последовательности и связаны линейным разностным уравнением с постоянными коэффициентами, образуют подмножество класса линейных систем с постоянными параметрами. Описание ЛПП-систем разностными уравнениями очень важно, так как оно часто позволяет найти эффективные способы построения таких систем. Более того, по разностному уравнению можно определить многие характеристики рассматриваемой системы, включая собственные частоты и их кратность, порядок системы, частоты, соответствующие нулевому коэффициенту передачи, и т. д.

В самом общем случае линейное разностное уравнение -го порядка с постоянными коэффициентами, относящееся к физически реализуемой системе, имеет вид

(2.18)

где коэффициенты и описывают конкретную систему, причем . Каким именно образом порядок системы характеризует математические свойства разностного уравнения, будет показано ниже. Уравнение (2.18) записано в виде, удобном для решения методом прямой подстановки. Имея набор начальных условий [например, , для ] и входную последовательность , по формуле (2.18) можно непосредственно вычислить выходную последовательность для . Например, разностное уравнение

(2.19)

с начальным условием и можно решить подстановкой, что дает

Хотя решение разностных уравнений прямой подстановкой и целесообразно в некоторых случаях, значительно полезнее получить решение уравнения в явном виде. Методы нахождения таких решений подробно освещены в литературе по разностным Уравнениям, и здесь будет дан лишь краткий обзор. Основная идея сводится к получению двух решений разностного уравнения: однородного и частного. Однородное решение получается путем подстановки нулей вместо всех членов, содержащих элементы входной последовательности , и определения отклика при нулевой входной последовательности. Именно этот класс решений описывает основные свойства заданной системы. Частное решение получают, подбирая вид последовательности на выходе при заданной входной последовательности . Для определения произвольных постоянных однородного решения используются начальные условия. В качестве примера решим этим методом уравнение (2.19). Однородное уравнение имеет вид

(2.20)

Известно, что характеристическими решениями однородных уравнений, соответствующих линейным разностным уравнениям с постоянными коэффициентами, являются решения вида .Поэтому, подставив в уравнение (2.20) вместо , получим

(2.21)

Частное решение, соответствующее входной последовательности , попробуем найти в виде

(2.22)

Из уравнения (2.19) получаем

Поскольку коэффициенты при равных степенях должны совпадать, B,СиDдолжны быть равны

(2.24)

Таким образом, общее решение имеет вид

(2.25)

Коэффициент определяется из начального условия , откуда и

(2.26)

Выборочная проверка решения (2.26) при показывает полное его совпадение с приведенным выше прямым решением. Очевидное преимущество решения (2.26) состоит в том, что оно позволяет весьма просто определить для любого конкретного .

Фиг. 2.7. Схема реализации простого разностного уравнения первого порядка.

Важное значение разностных уравнений состоит в том, что они непосредственно определяют способ построения цифровой системы. Так, разностное уравнение первого порядка самого общего вида

можно реализовать с помощью схемы, изображенной на фиг. 2.7. Блок «задержка» осуществляет задержку на один отсчет. Рассмотренная форма построения системы, в которой для входной и выходной последовательностей используются раздельные элементы задержки, называется прямой формой 1. Ниже мы обсудим различные методы построения этой и других цифровых систем.

Разностное уравнение второго порядка самого общего вида


Фиг. 2.8. Схема реализации разностного уравнения второго порядка.

может быть реализовано с помощью схемы, приведенной на фиг. 2.8. В этой схеме для входной и выходной последовательностей также используются раздельные элементы задержки.

Из последующего изложения материалов этой главы станет ясно, что системы первого и второго порядка могут быть использованы при реализации систем более высокого порядка, так как последние могут быть представлены в виде последовательно или параллельно соединенных систем первого и второго порядка.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение диффуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что диффуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.


Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.


Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию , обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

РАЗНОСТНЫЕ УРАВНЕНИЯ - уравнения, содержащие конечные разности искомой функции. (Конечная разность определяется как соотношение, связывающее дискретный набор значений функции y = f(x), соответствующих дискретной последовательности аргументов x1, x2, ..., xn.) В экономических исследованиях значения величин часто берутся в определенные дискретные моменты времени.

Напр., о выполнении плана судят по показателям на конец планируемого периода. Поэтому вместо скорости изменения какой-либо величины df/dt приходится брать среднюю скорость за определенный конечный интервал времени Δf/Δt. Если выбрать масштаб времени так, что длина рассматриваемого периода равна 1, то скорость изменения величины можно представить как разность

y = y(t+1) – y(t),

которую часто называют первой разностью. При этом различают правую и левую разности, в частности

y = y(t) – y(t–1)

Левая, а приведенная выше - правая. Можно определить вторую разность:

Δ(Δy) = Δy(t + 1) – Δy(t) = y(t + 2) –

– 2y(t + 1) + y(t)

и разности высших порядков Δn.

Теперь можно определить Р. у. как уравнение, связывающее между собой конечные разности в выбранной точке:

f = 0.

Р. у. всегда можно рассматривать как соотношение, связывающее значения функции в ряде соседних точек

y(t), y(t+1), ..., y(t+n).

При этом разность между последним и первым моментами времени называется порядком уравнения.

При численном решении дифференциальных уравнений их часто заменяют разностными. Это возможно, если решение Р. у. стремится к решению соответствующего дифференциального уравнения, когда интервал Δt стремится к нулю.

При исследовании функций многих переменных по аналогии с частными производными (см. Производная) вводятся также частные разности.

Линейные разностные уравнения первого порядка

y(x + 1) − ay(x) = 0. Линейное однородное разностное уравнение первого порядка с постоянными коэффициентами.

y(x + 1) − ay(x) = f(x). Линейное неоднородное разностное уравнение первого порядка с постоянными коэффициентами.

y(x + 1) − xy(x) = 0.

y(x + 1) − a(x − b)(x − c)y(x) = 0.

y(x + 1) − R(x)y(x) = 0, где R(x) -- рациональная функция.

y(x + 1) − f(x)y(x) = 0.

y(x + a) − by(x) = 0.

y(x + a) − by(x) = f(x).

y(x + a) − bxy(x) = 0.

y(x + a) − f(x)y(x) = 0.

Линейные разностные уравнения второго порядка, yn = y(n)

yn+2 + ayn+1 + byn = 0. Линейное однородное разностное уравнение второго порядка с постоянными коэффициентами.

yn+2 + ayn+1 + byn = fn. Линейное неоднородное разностное уравнение второго порядка с постоянными коэффициентами.

y(x + 2) + ay(x + 1) + by(x) = 0. Линейное однородное разностное уравнение второго порядка с постоянными коэффициентами.

y(x + 2) + ay(x + 1) + by(x) = f(x). Линейное неоднородное разностное уравнение второго порядка с постоянными коэффициентами.

y(x + 2) + a(x + 1)y(x + 1) + bx(x + 1)y(x) = 0.

На практике простейшие разностные уравнения возникают при исследовании например величины банковского вклада. Эта величина является переменной Y x , представляющей сумму, которая накапливается по установленному закону при целочисленных значениях аргумента x . Пусть сумма Y o положена в банк при условии начисления 100 r сложных процентов в год. Пусть начисление процентов производится один раз в год и x обозначает число лет с момента помещения вклада (x = 0, 1, 2,...). Обозначим величину вклада по истечении x лет через Y x . Мы получаем

Y x = (1+r)Y x-1.

Если начальная сумма составляет Y o , мы приходим к задаче отыскания решения полученного разностного уравнения, подчиненного начальному условию Y x = Y o при x = 0. Полученное разностное уравнение содержит Y x и значение этой переменной на один год раньше, т.е. Y x-1; в данном случае аргумент x явно не входит в разностное уравнение.

Вообще говоря, обыкновенное разностное уравнение устанавливает связь между значениями функции Y = Y(x ), рассматриваемой для ряда равноотстоящих значений аргумента x , но можно без ограничения общности считать, что искомая функция определена для равноотстоящих значений аргумента с шагом, равным единице. Таким образом, если начальное значение аргумента есть x , то ряд его равноотстоящих значений будет x , x+1, x+2,... и в обратном направлении: x , x-1, x-2,.... Соответствующие значения функции будем обозначать Y x, Y x+1, Y x+2, ... или Y x , Y x-1, Y x-2, .... Определим так называемые разности различных порядков функции Y x с помощью следующих формул:

Разности первого порядка

D Y x = Y x+1 - Y x ,

D Y x+1 =Y x+2 - Y x+1,

D Y x+2 = Y x+3 - Y x+2,

... ... ... ... ...

Разности второго порядка

D 2 Y x = D Y x+1 - D Y x ,

D 2 Y x+1 = D Y x+2 - D Y x+1 ,

D 2 Y x+2 = D Y x+3 - D Y x+2 ,

... ... ... ... ...

Разности третьего порядка

D 3 Y x = D 2 Y x+1 - D 2 Y x ,

D 3 Y x+1 = D 2 Y x+2 - D 2 Y x+1 ,

... ... ... ... ...

Обыкновенным разностным уравнением называется уравнение, связывающее значения одного независимого аргумента x , его функцииY x и разностей различных порядков этой функции D Y x , D 2 Y x, D 3 Y x, .... Такое уравнение можно записать в общем виде следующим образом:

j (x , Y x , D Y x , D 2 Y x D 3 Y x , D n Y x ) = 0, (10.1)

которое по форме аналогично дифференциальному уравнению.

Порядком разностного уравнения называется порядок наивысшей разности, входящей в это уравнение. Разностное уравнение (10.1) часто удобнее записать, пользуясь не разностями неизвестной функции, а ее значениями при последовательных значениях аргумента, то есть выразить D Y x , D 2 Y x, D 3 Y x ,... через Y x , Y x+1 , Y x+2, .... Уравнение (10.1) можно привести к одной из двух форм:

y (x , Y x , Y x+1, ...,Y x+n ) = 0, (10.2)

x (x , Y x , Y x-1, ...,Y x -n) = 0. (10.3)

Общее дискретное решение Y x обыкновенного разностного уравнения n -го порядка представляет функцию x (x = 0, 1. 2,...), содержащую ровно n произвольных постоянных:

Y x = Y(x, C 1 , C 2 ,..., C n ).

Паутинообразная модель

Пусть рынок какого-либо отдельного товара характеризуется следующими функциями спроса и предложения:

D = D(P), S = S(P).

Для существования равновесия цена должна быть такой, чтобы товар на рынке был распродан, или

D( P) = S(P).

Цена равновесия задается этим уравнением (которое может иметь множество решений), а соответствующий объем покупок-продаж, обозначаемый через , - следующим уравнением:

D () = S( ).

Динамическая модель получается при наличии запаздывания спроса или предложения. Простейшая модель в дискретном анализе включает неизменное запаздывание или отставание предложения на один интервал:

D t = D (P t) и S t = S (P t-1).

Это может случиться, если для производства рассматриваемого товара требуется определенный период времени, выбранный за интервал. Действие модели таково: при заданном P t-1 предшествующего периода объем предложения на рынке в текущем периоде будет S (P t-1), и величина P t должна установиться так, чтобы был куплен весь объем предложенного товара. Иными словами, P t и объем покупок-продаж X t характеризуются уравнением:

X t = D (P t) = S (P t-1).

Итак, зная исходную цену P o , с помощью этих уравнений мы можем получить значения P 1 и X 1. Затем, используя имеющуюся цену P 1, из соответствующих уравнений получим значения P 2 и X 2 и т.д. В общем изменение P t характеризуется разностным уравнением первого порядка (одноинтер­вальное отставание):

D (P t) = S (P t-1).

Решение можно проиллюстрировать диаграммой, представленной на рис.5, где D и S - соответственно кривые спроса и предложения, а положение равновесия (со значениями и ) соответствует точке их пересечения Q. Цена в начальный момент времени равна P o . Соответствующая точка Q o на кривой S дает объем предложения в период 1. Весь этот предложенный объем товара раскупается при цене P 1 , заданной точкой Q 1 на кривой D с той же ординатой (X 1), что и Q o . Во второй период времени движение происходит сначала по вертикали от точки Q 1 к точке на кривой S, дающей X 2, а затем по горизонтали - к точке Q 2 на кривой D. Последняя точка характеризует P 2 . Продолжение этого процесса и дает график паутины , показанный на рис. 5. Цены и объемы (покупок - продаж) в последовательные периоды времени являются соответственно координатами точек Q 1 , Q 2 , Q 3 ,... на кривой спроса D. В рассматриваемом случае последовательность точек стремится к Q. При этом точки поочередно располагаются на левой и правой стороне от Q. Следовательно, и значения цены P t стремятся к , располагаясь поочередно по обе стороны от . Точно так же обстоит дело и с объемами покупок - продаж (X t ).

Решение можно получить алгебраически для случая линейных функций спроса и предложения: D = a +aP , S = b +bP . Значения равновесия и будут заданы уравнениями

A +a = b +b ,

то есть

= (a - b )/(b - a), = (b a - a b )/(b - a). (10.4) . р t-1. (10.7)

Уравнения (10.7) аналогичны (10.5), за исключением того, что они описывают отклонения от уровней равновесия (теперь уже известно, что таковые существуют). Оба эти уравнения являются разностными уравнениями первого порядка. Положим c = b /a и подставим его в уравнение (10.7), так что разностное уравнение относительно р t будет

р t = c р t-1 . (10.8)

При данном значении р o в момент t = 0 из (10.8) получаем решение:

р t = р o c t,

или

P t = + (P o - ) c t .

Уравнение вида

где некоторые числа, называется линейным разностным уравнением с постоянными коэффициентами.

Обычно вместо уравнения (1) рассматривается уравнение, которое получается из (1) путем перехода от конечных разностей к значению функции, т. е. уравнение вида

Если в уравнении (2) функция, то такое уравнение называется однородным.

Рассмотрим однородное уравнение

Теория линейных разностных уравнений аналогична теории линейных дифференциальных уравнений.

Теорема 1.

Если функции являются решениями однородного уравнения (3), то функция

также является решением уравнения (3).

Доказательство.

Подставим функции в (3)

т. к. функция является решением уравнения (3).

Решетчатые функции называются линейно зависимыми, если найдутся такие числа, причем хотя бы одно отлично от нуля, для любого n справедливо:

(4)

Если (4) имеет место только при то функции , называются линейно независимыми.

Любое k линейно независимымых решений уравнения (3) образуют фундаментальную систему решений.

Пусть линейно независимымые решения уравнения (3), тогда

является общим решением уравнения (3). При нахождении конкретного условия, определяется из начальных условий

Будем искать решение уравнения (3) в виде:

Подставим в уравнение (3)

Поделим уравнение (5) на

Характеристическое уравнение. (6)

Положим, что (6) имеет только простые корни Нетрудно убедиться, что являются линейно независимыми. Общее решение однородного уравнения (3) имеет вид

Пример.

Рассмотрим уравнение

Характеристическое уравнение имеет вид

Решение имеет вид

Пусть корень имеет кратность r. Этому корню соответствует решение

Если предположить, что остальные корни не являются кратными, то общее решение уравнения (3) имеет вид

Рассмотрим общее решение неоднородного уравнения (2).

Частное решение неоднородного уравнения (2), тогда общее решение


ЛЕКЦИЯ 16

План лекции

1. Понятие о D и Z - преобразованиях.

2. Область применения D и Z - преобразований.



3. Обратные D и Z - преобразования.

ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ЛАПЛАСА.

Z – ПРЕОБРАЗОВАНИЕ.

В прикладных исследованиях, связанных с использованием решетчатых функций, широко применяется дискретное преобразование Лапласа (Д – преобразование) и Z – преобразование. По аналогии с обычным преобразованием Лапласа дискретное задается в виде

где (1)

Символически Д – преобразование записывается в виде

Для смещенных решетчатых функций

где - смещение.

Z – преобразование получается из Д – преобразования подстановкой и задается соотношением

(3)

Для смещенной функции

Функция называется оригиналом, если

2) существует показатель роста, т. е. найдутся такие и , что

(4)

Наименьшее из чисел (или предел, к которому стремится наименьшее число), для которого справедливо неравенство (4), называется абсциссой абсолютной сходимости и обозначается

Теорема.

Если функция является оригиналом, то изображение определено в области Re p > и является в этой области аналитической функцией.

Покажем, что при Re p > ряд (1) абсолютно сходится. Имеем

т. к. указанная сумма представляет собой сумму членов убывающей геометрической прогрессии с показателем Известно, что такая прогрессия сходится. Величину можно взять сколь угодно близкой величине , т. е. первая часть теоремы доказана.

Вторую часть теоремы примем без доказательств.

Изображение является периодической функцией с мнимым периодом

При изучении изображения нет смысла рассматривать его на всей комплексной плоскости, достаточно ограничиться изучением в любой полосе шириной Обычно на комплексной плоскости используется полоса, которая называется основной. Т. о. Можно считать, что изображения определено в полу полосе

и является в этой полу полосе аналитической функцией.



Найдем область определения и аналитичности функции F(z), положив . Покажем, что полу полоса плоскости p преобразованием переводится в область на плоскости z: .

Действительно, отрезок , ограничивающий полу полосу на плоскости p, переводится на плоскости z в окрестность: .

Обозначим через линию, в которую преобразование переводит отрезок . Тогда

Окрестность .

Т. о. Z – преобразование F(z) определено в области и является в этой области аналитической функцией.

Обратное Д – преобразование позволяет по изображению восстановить решетчатую функцию


(5)

Докажем справедливость равенства.

Лежат внутри окрестности.

(7)

(8)

В равенствах (7) и (8) вычеты берутся по всем особым точкам функции F(s).

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама