THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В 1916 г., всего лишь через несколько месяцев после того, как Эйнштейн опубликовал свои уравнения гравитационного поля в общей теории относительности, немецкий астроном Карл Шварцшильд нашел решение этих уравнений, описывающее простейшую черную дыру. Шварцшильдовская черная дыра "простая" в том смысле, что она сферически симметрична (т. е. у нее нет "предпочтительного" направления, скажем оси вращения) и характеризуется лишь массой. Поэтому здесь не учитываются те усложнения, которые вносят вращение, электрический заряд и магнитное поле.

Начиная с 1924 г. физики и математики начали осознавать, что в шварцшильдовском решении уравнений гравитационного поля есть что-то необычное. В частности, у этого решения имеется математическая особенность на горизонте событий. Сэр Артур Эддингтон был первым, кто подобрал новую систему координат, в которой этот эффект отсутствует. В 1933 г. Жорж Лемэтр продвинул эти исследования дальше. Однако лишь Джон Лайтон Синг раскрыл (в 1950 г.) истинную сущность геометрии шварцшильдовской черной дыры, открыв тем самым пути для последующих важных работ М. Д. Крускала и Г. Секереша в 1960 г.

Чтобы разобраться в деталях, выберем прежде всего трех ребят - Борю, Васю и Машу - и представим себе, что они парят в космосе (рис. 9.1). Всегда можно взять в космосе произвольную точку и определить положения всех троих, измеряя расстояния от них до этой точки. Например, Боря находится на расстоянии 1 км от этой произвольной начальной точки отсчета, Вася - в 2 км, а Маша - в 4 км. Характеристику положения в таком случае обычно обозначают буквой r и называют радиальным расстоянием. Таким путем можно выразить расстояние до любого объекта во Вселенной.

Заметим теперь, что наши три приятеля неподвижны в пространстве, но "перемещаются" во времени, ибо становятся все старше и старше. Эту особенность можно изобразить на пространственно-временной диаграмме (рис. 9.2). Расстояние от произвольной начальной точки отсчета ("начала") до другой точки в пространстве откладывается здесь вдоль горизонтальной оси, а время - вдоль вертикали. Кроме того, как и в частной теории относительности, удобно взять на координатных осях этого графика такие масштабы, чтобы лучи света описывались прямой с наклоном 45њ. На такой диаграмме пространства-времени мировые линии всех троих ребят идут вертикально вверх. Они все время остаются на одних и тех же расстояниях от точки начала (r = 0), но постепенно становятся все старше и старше.

Важно осознать, что левее точки r = 0 на рис. 9.2 вообще ничего нет. Эта область соответствует чему-то, что можно назвать "отрицательным пространством". Так как невозможно находиться "на расстоянии минус 3 м" от какой-либо точки (начала отсчета), то расстояния от начала всегда выражаются положительными числами.

Перейдем теперь к шварцшильдовской черной дыре. Как уже говорилось в предыдущей главе, такая дыра состоит из сингулярности, окруженной горизонтом событий на расстоянии 1 шварцшильдовского радиуса. Изображение такой черной дыры в пространстве дано на рис. 9.3 слева. При изображении черной дыры на пространственно-временной диаграмме произвольную точку начала отсчета координат для удобства совместим с сингулярностью. Тогда расстояния измеряются непосредственно от сингулярности по радиусу. Получившаяся диаграмма пространства-времени изображена на рис. 9.3 справа. Подобно тому как наши приятели Боря, Вася и Маша изображаются на рис. 9.2 вертикальными мировыми линиями, мировая линия горизонта событий идет вертикально вверх в точности на 1 шварцшильдовский радиус правее мировой линии сингулярности, которая на рис. 9.3 изображена пилообразной линией.

Хотя в рис. 9.3, изображающем шварцшильдовскую черную дыру в пространстве-времени, как будто нет ничего загадочного, к началу 1950-х годов физики начали понимать, что этой диаграммой суть дела не исчерпывается. У черной дыры имеются разные области пространства-времени: первая между сингулярностью и горизонтом событий и вторая за пределами горизонта событий. Мы не смогли полностью выразить в правой части рис. 9.3, как именно связаны между собой эти области.

Чтобы разобраться во взаимосвязи между областями пространства-времени внутри и вне горизонта событий, представим себе черную дыру с массой в 10 солнечных масс. Пусть из сингулярности вылетает астроном, пролетает через горизонт событий наружу, поднимается на максимальную высоту в 1 миллион километров над черной дырой, а затем падает обратно, сквозь горизонт событий, и снова падает в сингулярность. Полет астронома изображен на рис. 9.4.

Внимательному читателю это может показаться невозможным - ведь из сингулярности выскочить вообще нельзя! Ограничимся тем, что сошлемся на чисто математическую возможность такого путешествия. Как станет видно из дальнейшего, полное решение Шварцшильда содержит как черную, так и белую дыру. Поэтому на протяжении нескольких следующих разделов от читателя потребуется терпение и внимание. Здесь и в последующих главах мы будем иллюстрировать изложение с помощью путешествий астрономов или космонавтов к черным дырам. Для удобства будем говорить о космонавте просто "он".

Астроном-путешественник имеет с собой часы, чтобы измерять свое собственное время. У домоседов-ученых, следящих за его полетом с расстояния в 1 миллион километров от черной дыры, тоже имеются часы. Пространство там плоское, и часы измеряют координатное время. При достижении высшей точки траектории (на расстоянии миллиона километров от черной дыры) все часы ставятся на один и тот же момент (синхронизуются) и теперь показывают 12 ч дня. Тогда можно вычислить, в какой момент (как по собственному времени путешественника, так и по координатному времени) астроном попадет в каждый интересующий нас пункт своей траектории.

Напомним, что часы астронома измеряют его собственное время. Поэтому по ним нельзя заметить "замедления хода времени", обусловленного эффектом гравитационного красного смещения. При заданных значениях массы черной дыры и высоты над ней высшей точки пути расчеты приводят к следующему результату:

В собственном времени астронома

  1. Астроном вылетает из сингулярности в 11 ч 40 мин утра (по своим часам).
  2. Через 1/10 000 с после 11 ч 40 мин он перелетает через горизонт событий во внешний мир.
  3. В 12 ч дня он достигает максимальной высоты в 1 миллион километров над черной дырой.
  4. За одну 1/10 000 с до 12 ч 20 мин дня он пересекает горизонт событий, двигаясь внутрь.
  5. Астроном возвращается в сингулярность в 12 ч 20 мин дня.

Иными словами, на движение от сингулярности до горизонта событий и обратно ему нужно одно и то же время - 1/10 000 с, тогда как на перемещение от горизонта событий до высшей точки своей траектории и наоборот он затрачивает всякий раз 20 мин (за 20 мин он проходит 1 миллион километров). Следует иметь в виду, что собственное время при полете течет стандартным образом.

Проводящиељљ издалекаљљ наблюденияљљ ученыељљ измеряютљљ по своим часам координатное время; их вычисления дают следующие результаты:

В координатном времени

Конечно, все согласны в том, что астроном-путешественник достигает максимальной высоты полета в 12 ч дня, т.е. в тот момент, в который синхронизуются все часы. Все также будут согласны и в том, когда астроном вылетает из сингулярности и когда он возвращается в нее. Но в остальном шварцшильдовская геометрия явно ненормальна. Вылетев из сингулярности, астроном перемещается в координатном времени вспять во времени до года . Затем он снова мчится вперед во времени, достигает максимальной высоты полета в полдень, а опускается под горизонт событий в год . После этого он снова перемещается вспять во времени и попадает в сингулярность в 12 ч 20 мин дня. На диаграмме пространства-времени его мировая линия имеет вид, показанный на рис. 9.5.

Кое-что из этих странных выводов можно понять интуитивно. Вспомним, что с точки зрения удаленного наблюдателя (часы которого измеряют координатное время) на горизонте событий время останавливается. Вспомним также, что камень или любое другое тело, падающее на горизонт событий, никогда не дойдут до точки с высотой шварцшильдовского радиуса в представлении далекого наблюдателя. Поэтому падающий в черную дыру астроном не может пересечь горизонта событий вплоть до года , т. е. в бесконечно отдаленном будущем. Так как все путешествие симметрично относительно момента 12 ч дня (т.е. взлет и падение занимают одно и то же время), то далекие ученые должны наблюдать, что астроном поднимался, двигаясь к ним, в течение миллиардов лет. Он должен перейти наружу горизонт событий в год .

Еще непонятнее тот факт, что удаленные наблюдатели видят двух движущихся астрономов. Так, например, в 3 ч дня они видят одного астронома, падающего на горизонт событий (движущегося вперед во времени). Однако, согласно их же расчетам, должен существовать и другой астроном внутри горизонта событий, падающий на сингулярность (и движущийся вспять во времени).

Конечно, это бессмыслица. Точнее, такое странное поведение координатного времени означает, что изображенная на рис. 9.3 картина шварцшильдовской черной дыры попросту не может быть верна. Приходится поискать другие - причем их может быть множество - истинные диаграммы пространства-времени для черной дыры. В той простой диаграмме, которая показана на рис. 9.5, одни и те же области пространства-времени оказываются перекрытыми дважды, поэтому и наблюдаются сразу два астронома в то время, как на самом деле существует только один. Значит, нужно развернуть или преобразовать эту простую картинку таким образом, чтобы выявить истинную, или глобальную, структуру всего пространства-времени, связанного со шварцшильдовской черной дырой.

Чтобы лучше понять, как должна выглядеть эта глобальная картина, рассмотрим горизонт событий. На упрощенной двумерной диаграмме пространства-времени (см. правую сторону рис. 9.3) горизонт событийэто линия, идущая от момента (отдаленное прошлое) к моменту (далекое будущее) и находящаяся Точно на расстоянии 1 шварцшильдовского радиуса от сингулярности. Такая линия, конечно, правильно изображает расположение поверхности сферы в обычном трехмерном пространстве. Но когда физики попробовали вычислить объем этой сферы, они, к своему изумлению, обнаружили, что он равен нулю. Если объем некоторой сферы равен нулю, то это, конечно, просто точка. Иными словами, физики стали подозревать, что данная "линия" на упрощенной диаграмме должна быть в глобальной картине черной дыры на самом деле точкой!

Представьте себе к тому же произвольное число астрономов, выскакивающих из сингулярности, взлетающих на разные максимальные высоты над горизонтом событий и снова падающих обратно. Вне зависимости от того, когда именно они были выброшены из сингулярности, и от того, на какую именно высоту над горизонтом событий взлетали, все они будут пересекать горизонт событий в моменты координатного времени (на пути наружу) и (на обратном пути). В результате проницательные физики также заподозрят, что эти две "точки", и , должны быть обязательно представлены в глобальной картине черной дыры в виде двух отрезков мировых линий!

Чтобы перейти от упрощенного изображения черной дыры к ее глобальной картине, следует переделать наше упрощенное изображение в гораздо более сложную диаграмму пространства-времени. И все же нашим конечным результатом окажется новая пространственно-временная диаграмма! На этой диаграмме пространственноподобные величины будут направлены горизонтально (слева направо), а временноподобные величины - вертикально (снизу вверх). Иными словами, преобразование должно сработать так, чтобы старые пространственная и временная координаты были заменены на новые пространственную и временную координаты, которые отражали бы полностью истинную природу черной дыры.

Чтобы постараться понять, как могут быть связаны между собой старая и новая системы координат, рассмотрим некоего наблюдателя вблизи черной дыры. Чтобы избежать падения на черную дыру и оставаться на постоянном расстоянии от нее, он должен располагать мощными ракетными двигателями, выбрасывающими потоки газов вниз. В плоском пространстве-времени, вдали от тяготеющих масс, космический корабль при работающих двигателях приобрел бы ускорение и двигался бы все быстрее и быстрее, ибо тяга ракетных двигателей обеспечила бы ему постоянное возрастание скорости. Мировая линия такого корабля изображена на диаграмме пространства-времени на рис. 9.6. Эта линия постепенно сближается с прямой, имеющей наклон 45њ, по мере того, как вследствие непрерывной работы двигателей скорость корабля приближается к скорости света. Кривая, изображающая подобную мировую линию, называется гиперболой. Наблюдатель, который находится близ черной дыры и пытается остаться на постоянном расстоянии от нее, будет постоянно испытывать ускорение, вызванное работой ракетных двигателей корабля. Проницательные физики заподозрят поэтому, что линии "постоянной высоты" в пересмотренной и улучшенной диаграмме пространства-времени вблизи черной дыры будут ветвями гипербол.

Наконец, тот наблюдатель, который пытается удержаться на горизонте событий, должен располагать невероятно мощными ракетными двигателями. Чтобы он не свалился внутрь черной дыры, эти двигатели должны работать с такой мощностью, что наблюдатель, будь он в плоском мире, двигался бы со скоростью света. Значит, мировые линии горизонта событий должны быть наклонены в точности под углом 45њ в пересмотренной и улучшенной диаграмме пространства-времени.

В 1960 г. независимо друг от друга Крускал и Секереш нашли требуемые преобразования, переводящие старую диаграмму пространства-времени для шварцшильдовской черной дыры в новую диаграмму - пересмотренную и улучшенную. Эта новая диаграмма Крускала-Секереша корректно покрывает все пространство-время и полностью выявляет глобальную структуру черной дыры. При этом подтверждаются все отмеченные ранее подозрения и обнаруживаются некоторые новые удивительные и неожиданные детали. Однако, хотя преобразования Крускала и Секереша сразу переводят старую картину в новую, наглядно представить себе их лучше в виде последовательности преобразований, схематически изображенных на рис. 9.7. Конечный результат - это опять-таки диаграмма пространства-времени (пространственное направление горизонтальное, а временное - вертикальное), причем лучи света, идущие к черной дыре и от нее, изображаются, как обычно, прямыми с наклоном 45њ.

Конечный результат преобразования поражает и на первых порах вызывает недоверие: вы видите, что там изображены на самом деле две сингулярности, одна в прошлом, а другая в будущем; вдобавок к этому вдали от черной дыры существуют две внешние Вселенные.

Но на самом деле диаграмма Крускала-Секереша правильна, и, чтобы понять это, мы вновь рассмотрим полет астронома, выброшенного из сингулярности, пересекающего горизонт событий и снова падающего обратно. Мы уже знаем, его мировая линия на упрощенной диаграмме пространства-времени необычна. Эта линия снова изображена слева на рис. 9.8. На диаграмме же Крускала-Секереша (рис. 9.8, справа) такая линия выглядит намного осмысленнее. Наблюдатель на самом деле выскакивает из сингулярности в прошлом и в конце концов попадает в сингулярность в будущем. Следовательно, такое "аналитически полное" описание решения Шварцшильда включает как черную, так и белую дыру. Наш астроном на самом деле вылетает из белой дыры и в конце концов падает в черную дыру. Обратите внимание на то, что его мировая линия повсюду наклонена к вертикали менее чем на 45њ, т.е. эта линия везде временноподобна и поэтому допустима. Сравнивая же левую и правую части рис. 9.8, вы обнаружите, что "точки" моментов времени и на горизонте событий теперь растянулись в две прямые линии, имеющие наклон 45њ, что подтверждает наши прежние подозрения.

При переходе к диаграмме Крускала-Секереша обнаруживается истинная природа всего пространства-времени вблизи шварцшильдовской черной дыры. На упрощенной диаграмме разные участки пространства-времени перекрывались друг с другом. Именно поэтому удаленные ученые, наблюдая падение астронома в черную дыру (или его вылет из нее), ошибочно предполагали, что имеются два астронома. На диаграмме Крускала-Секереша эти перекрывающиеся участки должным образом распутаны. На рис. 9.9 показано, как связаны между собой эти разные участки на обоих типах диаграмм. Внешних Вселенных на самом деле две (области I и III), как и внутренних частей черной дыры (области II и IV) между сингулярностями и горизонтом событий.

Полезно также проанализировать, как отдельные части пространственно-временной сетки преобразуются при переходе от упрощенной диаграммы к диаграмме Крускала-Секереша. В упрощенном представлении (рис. 9.10) штриховые линии постоянных высот над сингулярностью - это просто прямые, направленные вертикально. Пунктирные линии постоянного координатного времени - также прямые, но горизонтальные. Пространственно-временная сетка выглядит как кусок обычной миллиметровки.

На диаграмме Крускала-Секереша (рис. 9.11) линии постоянного времени (пунктирные) остались прямыми, но теперь они расходятся под разными углами. Линии же постоянного расстояния от черной дыры (штриховые) суть гиперболы, как мы подозревали раньше.

Анализируя рис. 9.11, можно понять, почему при переходе через горизонт событий пространство и время меняются ролями, как уже говорилось в предыдущей главе. Вспомним, что на упрощенной диаграмме (см. рис. 9.10) линии постоянного расстояния направлены по вертикали. Так, какая-то конкретная штриховая линия может изображать точку, находящуюся постоянно на высоте 10 км над черной дырой. Такая линия должна быть параллельна горизонту событий на упрощенной диаграмме, т.е. она должна быть вертикальной; поскольку она изображает нечто неподвижное во все моменты времени, то линия постоянного расстояния должна иметь временноподобное направление (иначе говоря, вверх) на этой упрощенной диаграмме.

На рис. 9.11 изображена диаграмма Крускала-Секереша; здесь штриховые линии постоянного расстояния имеют в общем направление вверх, если взять их достаточно далеко от черной дыры. Там они все еще временноподобные. Однако внутри горизонта событий штриховые линии постоянного расстояния ориентированы в общем горизонтально. Значит, под горизонтом событий линии постоянного расстояния имеют пространственноподобное направление! Следовательно, то, что обычно (во внешней Вселенной) связывается с расстоянием, ведет себя внутри горизонта событий подобно времени.

Аналогично этому на упрощенной диаграмме (см. рис. 9.10) линии постоянного времени горизонтальны и имеют пространственноподобное направление. Например, некая конкретная пунктирная линия может означать момент "3 ч дня для всех точек пространства". Такая линия должна быть параллельна пространственной оси на упрощенной диаграмме, т.е. она должна быть горизонтальной.

На рис. 9.11, где изображена диаграмма Крускала-Секереша, пунктирные линии постоянного времени в общем имеют пространственноподобное направление, если взять их далеко от черной дыры, т.е. они там почти горизонтальны. Но внутри горизонта событий пунктирные линии постоянного времени направлены в общем снизу вверх, т.е. ориентированы во временноподобном направлении. Итак, под горизонтом событий линии постоянного времени имеют временноподобное направление! Следовательно, то, что обычно (во внешней Вселенной) связывается со временем, ведет себя внутри горизонта событий подобно расстоянию. При пересечении горизонта событий пространство и время меняются ролями.

В связи с обсуждением свойств пространства и времени важно отметить, что на диаграмме Крускала-Секереша (рис. 9.11) обе сингулярности (и в прошлом, и в будущем) ориентированы горизонтально. Обе гиперболы, изображающие "точку" r = 0, имеют повсюду наклон менее 45њ к вертикали. Эти линии про-странственноподобные, и поэтому говорят, что шварцшильдовская сингулярность пространственноподобна.

Тот факт, что шварцшильдовская сингулярность пространственноподобна, приведет к важным заключениям. Как и в частной теории относительности (см. рис. 1.9), здесь невозможно двигаться со сверхсветовой скоростью, так что пространственнопо-добные мировые линии в качестве "путей" движения запрещены. Двигаться по мировым линиям, обладающим наклоном более 45њ к вертикальному (временноподобному) направлению, невозможно. Поэтому невозможно попасть из нашей Вселенной (на диаграмме Крускала-Секереша справа) в другую Вселенную (на этой же диаграмме слева). Любой путь, связывающий друг с другом обе Вселенные, должен хотя бы в одном месте быть пространственноподобным, а такие пути запрещены для движения. Кроме того, так как горизонт событий наклонен в точности под углом 45њ, то астроном из нашей Вселенной, опустившийся под этот горизонт, никогда больше не сможет из-под него выйти. Например, если кто-нибудь проникнет в область II на рис. 9.9, то все допустимые временноподобные мировые линии приведут его прямо в сингулярность. Шварцшильдовская черная дыра-это ловушка без выхода.

Чтобы полнее почувствовать природу геометрии Крускала-Секереша, поучительно рассмотреть пространственноподобные срезы диаграммы пространства-времени, выполненные этими авторами. Это будут диаграммы вложения искривленного пространства вблизи черной дыры. Такой метод получения срезов пространства-времени по пространственноподобным гиперповерхностям применялся нами и ранее (см. рис. 5.9, 5.10 и 5.11) и облегчил понимание свойств пространства в окрестностях Солнца.

На рис. 9.12 изображена диаграмма Крускала-Секереша, "нарезанная ломтиками" по характерным пространственноподобным гиперповерхностям. Срез А относится к раннему моменту времени. Первоначально две Вселенные, находящиеся вне черной дыры, никак не связаны между собой. На пути от одной Вселенной к другой пространственноподобный срез наталкивается на сингулярность. Поэтому диаграмма вложения для среза А описывает две раздельные Вселенные (изображенные в виде двух параллельных друг другу асимптотически плоских листов), в каждой из которых имеется сингулярность. Позднее при дальнейшей эволюции этих Вселенных сингулярности соединяются и возникает мостик, в котором сингулярностей уже нет. Это соответствует срезу Б, куда сингулярность не входит. С течением времени этот мостик, или "кротовая нора", расширяется и достигает наибольшего поперечника, равного двум шварцшильдовским радиусам (момент, соответствующий срезу В). Позднее мостик начинает снова стягиваться (срез Г) и наконец разрывается (срез Д), так что мы имеем снова две раздельные Вселенные. Такая эволюция кротовой норы (рис. 9.12) занимает менее 1/10 000 с, если черная дыра имеет массу Солнца.

Обнаружение Крускалом и Секерешем подобной глобальной структуры пространства-времени у черной дыры явилось решающим прорывом на фронте теоретической астрофизики. Впервые удалось построить диаграммы, полностью изображающие все области пространства и времени. Но после 1960 г. были достигнуты и новые успехи, прежде всего Роджером Пенроузом. Хотя на диаграмме Крускала - Секереша и представлена вся история, эта диаграмма простирается вправо и влево бесконечно далеко. Например, наша Вселенная простирается на бесконечное расстояние вправо на диаграмме Крускала-Секереша, тогда как влево на той же диаграмме до бесконечности уходит пространство-время "другой" асимптотически плоской Вселенной, которая параллельна нашей. Пенроуз первым понял, насколько полезно и поучительно было бы пользоваться "картой", отображающей эти бесконечные просторы на какие-то конечные области, по которым было бы возможно точно судить о происходящем вдали от черной дыры. Чтобы осуществить эту идею, Пенроуз привлек так называемые методы конформного отображения, с помощью которых все пространство-время, включая полностью и обе Вселенные, изображается на одной конечной диаграмме.

Чтобы познакомить вас с методами Пенроуза, обратимся к обычному плоскому пространству-времени типа изображенного на рис. 9.2. Все пространство-время там сосредоточено на правой стороне диаграммы просто потому, что невозможно оказаться на отрицательном расстоянии от произвольного начала. Вы можете находиться от него, скажем, в 2 м, но уж никак не в минус 2 м. Вернемся к рис. 9.2. Мировые линии Бори, Васи и Маши изображены там лишь на ограниченной области пространства-времени ввиду ограниченности размеров страницы. Если вам захочется посмотреть, где будут Боря, Вася и Маша через тысячу лет или где они были миллиард лет назад, вам понадобится намного больший лист бумаги. Гораздо удобнее было бы изобразить все эти далекие от точки "здесь и теперь" положения (события) на компактной, небольшой диаграмме.

Мы уже встречались с тем, что "самые удаленные" области пространства-времени именуются бесконечностями. Эти области крайне далеки от "здесь и теперь" в пространстве или во времени (последнее означает, что они могут находиться в очень далеком, будущем или очень далеком прошлом). Как видно из рис. 9.13, может быть пять типов бесконечностей. Прежде всего это I - -временноподобная бесконечность в прошлом. Она является тем "местом", откуда произошли все материальные объекты (Боря, Вася, Маша, Земля, галактики и все прочее). Все такие объекты движутся по временноподобным мировым линиям и должны уйти в I + - временноподобную бесконечность будущего, куда-то в миллиарды лет после "теперь". Кроме того, имеется I 0 - пространственноподобная бесконечность, и так как ничто не может двигаться быстрее света, то ничто (кроме разве тахионов) не может никогда попасть в I 0 . Если быстрее света не движется никакой из известных физике объектов, то фотоны движутся в точности со скоростью света по мировым линиям, наклоненным на 45њ на диаграмме пространства-времени. Это дает возможность ввести "- световую бесконечность прошлого, откуда приходят все световые лучи. Существует, наконец, и - световая бесконечность будущего (куда уходят все "световые лучи). Всякая удаленная область пространства-времени принадлежит одной из этих пяти бесконечностей; I - , , I 0 , или I + .

Рис. 9.13. Бесконечности. Наиболее удаленные "окраины" пространства-времени (бесконечности) делятся на пять типов. Временноподобная бесконечность прошлого (I - )-та область, откуда приходят все материальные тела, а временноподобная бесконечность будущего (I + )-та область, куда они все уходят. Световая бесконечность прошлого () - та область, откуда приходят световые лучи, а световая бесконечность будущего - та область (I + ), куда они уходят. Ничто (кроме тахионов) не может попасть в пространственноподобную бесконечность (I 0). Рис. 9.14. Конформное отображение по Пенроузу. Существует математический прием, при помощи которого удается "стянуть" наиболее удаленные окраины пространства-времени (все пять бесконечностей) во вполне обозримую конечную область.

Метод Пенроуза сводится к математическому приему стягивания всех этих бесконечностей на один и тот же лист бумаги. Преобразования, осуществляющие такое стягивание, действуют наподобие бульдозеров (см. образное представление этих преобразований на рис. 9.14), сгребающих наиболее удаленные участки пространства-времени туда, где их можно лучше рассмотреть. Результат такого преобразования представлен на рис. 9.15. Следует иметь в виду, что линии постоянного расстояния от произвольной точки отсчета в основном вертикальные и всегда указывают временноподобное направление. Линии постоянного времени в основном горизонтальные и всегда указывают пространственноподобное направление.

На конформной карте всего плоского пространства-времени (рис. 9.15) пространство-время как целое уместилось в треугольнике. Вся временноподобная бесконечность в прошлом (I - ) собрана в одну-единственную точку внизу диаграммы. Все временноподобные мировые линии всех материальных объектов выходят из этой точки, изображающей чрезвычайно удаленное прошлое. Вся временноподобная бесконечность в будущем (I + ) собрана в одну-единственную точку вверху диаграммы. Временноподобные мировые линии всех материальных объектов во Вселенной в конце концов упираются в эту точку, изображающую далекое будущее. Пространственноподобная бесконечность (I 0) собрана в точку справа на диаграмме. Ничто (кроме тахионов) никогда не может попасть в I 0 . Световые бесконечности в прошлом и в будущем и превратились в прямые с наклоном 45њ, ограничивающие диаграмму справа вверху и справа внизу по диагоналям. Световые лучи всегда идут по мировым линиям с наклоном 45њ, так что свет, приходящий из удаленного прошлого, начинает свой путь где-то на , а уходящий в далекое будущее кончает свой путь где-то на . Вертикальная прямая, ограничивающая диаграмму слева, - это просто временноподобная мировая линия выбранной нами произвольной начальной точки отсчета (r = 0).

Рис. 9.15. Диаграмма Пенроуза для плоского пространства-времени. Все пространство-время собрано внутрь треугольника с помощью способа конформного отображения, придуманного Пенроузом. Из пяти бесконечностей три (I - , I 0 , I + ) сжаты до отдельных точек, а две - световые бесконечности и - стали прямыми линиями, имеющими наклон 45њ. Рис. 9.16. Пример конформной диаграммы Пенроуза. Эта диаграмма изображает фактически то же, что и рис. 9.2. Однако на конформной диаграмме мировые линии объектов представлены полностью (от удаленного прошлого I - до далекого будущего I + ).

Чтобы покончить с описанием конформной диаграммы Пенроуза плоскогољљљ пространства-времени,љљљ мыљљљ изобразилиљљљ на рис. 9.16 полностью мировые линии Бори, Васи и Маши. Сравните эту диаграмму с рис. 9.2-ведь это одно и то же, только на конформной диаграмме мировые линии прослеживаются на всем у их протяжении (от удаленного прошлого I - љ до далекого будущего I + )

Изображение обычного плоского пространства-времени по способу Пенроуза не дает ничего сенсационного. Однако способ Пенроуза применим и к черным дырам! В частности, диаграмму Крускала-Секереша (см. рис. 9.11) можно отобразить конформно таким образом, что физик увидит все пространство-время всех Вселенных изображенным на одном-единственном листке бумаги. Как это наглядно изображено на рис. 9.17, конформные преобразования Пенроуза здесь снова работают подобно бульдозерам, "сгребающим" пространство-время. Окончательный результат показан на рис. 9.18.

На диаграмме Пенроуза шварцшильдовской черной дыры (рис. 9.18) мы снова замечаем, что линии постоянного времени и линии постоянного расстояния ведут себя, по существу, так же, как и на диаграмме Крускала-Секереша. Горизонт событий сохраняет свой наклон в 45њ, а сингулярности (как в прошлом, так и в будущем) остаются пространственноподобными. Обмен ролями между пространством и временем, как и прежде, происходит при пересечении горизонта событий. Однако теперь самые удаленные части обеих связанных с черной дырой Вселенных находятся у нас перед глазами. Все пять бесконечностей нашей Вселенной (I - , , I 0 , , I + ) видны справа на диаграмме, а слева на ней же можно увидеть все пять бесконечностей другой Вселенной (I - , , I 0 , , I + ).

Мы можем теперь перейти к заключительному упражнению с шварцшильдовской черной дырой - выяснить, что увидят отчаянно любознательные астрономы-камикадзе, падающие на черную дыру и пересекающие горизонт событий.

Космический корабль этих астрономов изображен на рис. 9.19. Носовой иллюминатор всегда направлен прямо на сингулярность, а кормовой - в противоположную сторону, т. е. на нашу внешнюю Вселенную. Отметим, что у космического корабля теперь нет ракетных двигателей для замедления его падения. Начав движение с большой высоты над черной дырой, астрономы просто вертикально падают со все увеличивающейся (по их измерениям) скоростью. Их мировая линия (рис. 9.20) проходит сначала через горизонт событий, а затем ведет в сингулярность. Так как их скорость всегда меньше скорости света, то мировая линия корабля на диаграмме Пенроуза должна быть временноподобной, т.е. повсюду обладать наклоном к вертикали менее 45њ. Во время путешествия астрономы делают на разных этапах пути четыре пары фотографий - по одной из каждого иллюминатора. Первая пара (снимки А) сделана, когда они были еще очень далеко от черной дыры. На рис. 9.21,А видно черную дыру как маленькое пятнышко в центре поля зрения носового иллюминатора. Хотя в непосредственной близости от черной дыры вид неба искажен, его остальная часть выглядит совершенно обычно. По мере того как скорость падения астрономов на черную дыру возрастает, свет от объектов из удаленной Вселенной, наблюдаемый через кормовой иллюминатор, испытывает все более и более сильное красное смещение.

Рис. 9.21.

Фото А. Далеко от черной дыры. С большого расстояния черная дыра выглядит как маленькое черное пятнышко в центре поля зрения носового иллюминатора. Падающие в дыру астрономы наблюдают через кормовой иллюминатор неискаженный вид Вселенной, из которой они прилетели.

Фото Б. Ни горизонте событий. Благодаря эффекту аберрации изображение черной дыры сжато в сторону центра поля зрения носового иллюминатора. Астроном, ведущий наблюдение в кормовой иллюминатор, видит лишь ту Вселенную, из которой прибыл корабль.

Фото В. Между горизонтом событий и сингулярностью. Опустившись под горизонт событий, астроном, наблюдающий в носовой иллюминатор, может видеть другую Вселенную. Приходящий из области другой Вселенной свет заполняет центральную часть его поля зрения.

Фото Г. Непосредственно над сингулярностью. Когда астрономы приближаются к сингулярности, через носовой иллюминатор становится все лучше видно другую Вселенную. Изображение же собственно черной дыры (имеющее вид кольца) становится все тоньше и тоньше, быстро приближаясь к краю поля зрения носового иллюминатора.

Хотя, по утверждению удаленных наблюдателей, падение космического корабля замедляется до полной его остановки на горизонте событий, астрономы на самом космическом корабле ничего подобного не заметят. По их мнению, скорость корабля все время возрастает и при пересечении горизонта событий она составляет заметную долю скорости света. Это существенно по той причине, что в результате падающие астрономы наблюдают явление аберрации света звезд, очень похожее на рассмотренное нами в гл. 3 (см. рис. 3.9, 3.11). Вспомните, что при движении с околосветовой скоростью вы заметите сильные искажения картины неба. В частности, изображения небесных тел как бы собираются впереди движущегося наблюдателя. Вследствие этого эффекта изображение черной дыры концентрируется ближе к середине носового иллюминатора падающего космического корабля.

Картина, наблюдаемая падающими астрономами с горизонта событий, показана на рис. 9.21,Б . Этот и последующие рисунки построены на основании расчетов, проделанных Кэннингэмом в Калифорнийском технологическом институте в 1975 г. Если бы астрономы покоились, изображение черной дыры занимало бы все поле зрения носового иллюминатора (рис. 8.15,Д ). Но так как они движутся с большой скоростью, изображение сосредоточивается в середине носового иллюминатора. Его угловой поперечник примерно равен 80њ. Вид неба рядом с черной дырой очень сильно искажен, а астроном, ведущий наблюдение через кормовой иллюминатор, видит лишь ту Вселенную, из которой они прилетели.

Для понимания того, что же будет видно, когда корабль будет находиться внутри горизонта событий, вернемся к диаграмме Пенроуза шварцшильдовской черной дыры (см. рис. 9.18 или 9.20). Вспомним, что идущие в черную дыру световые лучи имеют на этой диаграмме наклон 45њ. Поэтому, оказавшись под горизонтом событий, астрономы смогут видеть и другую Вселенную. Лучи света из удаленных частей другой Вселенной (т.е. из ее бесконечности в левой части диаграммы Пенроуза) смогут теперь дойти до астрономов. Как показано на рис. 9.21,В , в центре поля зрения носового иллюминатора космического корабля, находящегося между горизонтом событий и сингулярностью, видна другая Вселенная. Черная часть дыры представляется теперь в виде кольца, отделяющего изображение нашей Вселенной от изображения другой Вселенной. По мере приближения падающих наблюдателей к сингулярности черное кольцо становится все тоньше, прижимаясь к самому краю поля зрения носового иллюминатора. Вид неба из точки прямо над сингулярностью показан на рис. 9.21,Г . В носовой иллюминатор становится все лучше и лучше видно другую Вселенную, а прямо на сингулярности ее вид целиком заполняет поле зрения носового иллюминатора. Астроном же, проводящий наблюдения через кормовой иллюминатор, видит на протяжении всего полета лишь нашу внешнюю Вселенную, хотя ее изображение становится все более и более искаженным.

Падающие астрономы отметят еще один важный эффект, который не отражен на "снимках" 9.21,А-Г . Вспомним, что свет, уходящий из окрестностей горизонта событий в удаленную Вселенную, претерпевает сильнейшее красное смещение. Это явление, называемое гравитационным красным смещением, мы обсуждали в гл. 5 и 8. Красное смещение света, приходящего из области с сильным гравитационным полем, соответствует потере им энергии. Обратно, когда свет "падает" на черную дыру, он испытывает фиолетовое смещение и приобретает энергию. Приходящие из удаленной Вселенной туда слабые радиоволны превращаются, например, в мощные рентгеновские или гамма-лучи непосредственно над горизонтом событий. Если описываемые диаграммами Пенроуза типа изображенной на рис. 9.18 черные дыры действительно существуют в природе, то свет, падающий на них из , скапливается в течение миллиардов лет около горизонта событий. Этот падающий свет приобретает чудовищную энергию, и когда астрономы опускаются под горизонт событий, они встречаются поэтому с неожиданной резкой вспышкой рентгеновских и гамма-лучей. Тот свет, который приходит из области - решение Шварцшильда - решение Керра - белая дыра - сингулярность

См. также: Все публикации на ту же тему >>

Предыстория публикаций

25 ноября 1915 года профессор Берлинского университета Альберт Эйнштейн представил Королевской академии наук Пруссии письменный доклад, содержащий систему полностью ковариантных (не меняющих вид при изменении системы координат) уравнений релятивистской теории гравитационного поля, известной также как Общая теория относительности (ОТО).

Неделей раньше Эйнштейн выступил на заседании Академии с лекцией, где продемонстрировал более раннюю и еще неполную версию этих уравнений, которые не обладали полной ковариантностью. Однако уже эти уравнения дали Эйнштейну возможность с помощью метода последовательных приближений правильно вычислить аномальное вращение орбиты Меркурия и предсказать величину углового отклонения звездного света в поле тяготения Солнца. Карл Шварцшильд Это выступление нашло благодарного слушателя — Карла Шварцшильда, коллегу Эйнштейна по Академии. Он служил лейтенантом артиллерии в действующей армии Германской империи и как раз тогда приехал в отпуск. В декабре, уже по возвращении на фронт, Шварцшильд нашел точное решение первой версии уравнений Эйнштейна, которое через его посредство опубликовал в «Отчетах о заседаниях» (Sitzungsberichte ) Академии. В феврале, уже ознакомившись с окончательной версией уравнений ОТО, Шварцшильд отослал Эйнштейну вторую статью, в которой впервые фигурирует гравитационный, он же шварцшильдовский, радиус. В современной интерпретации это — радиус горизонта черной дыры, из-под которого невозможна передача сигнала наружу. 24 февраля, когда Эйнштейн передал в печать и эту работу, битва под Верденом длилась уже три дня.

Наука и война

Карл Шварцшильд (1873−1916) был не только блестящим, но и разносторонним ученым. Он оставил глубокий след в наблюдательной астрономии, будучи одним из пионеров оснащения телескопов фотографической аппаратурой и ее использования в целях фотометрии. Ему принадлежат глубокие и оригинальные труды в области электродинамики, звездной астрономии, астрофизики и оптики. Шварцшильд даже успел внести немалый вклад в квантовую механику атомных оболочек, построив в своей последней научной работе теорию эффекта Штарка — смещения и расщепления атомных уровней в электрическом поле . В 1900 году, за пятнадцать лет до создания ОТО, он не только всерьез рассмотрел ту парадоксальную возможность, что геометрия Вселенной отличается от евклидовой (такое допускал еще Лобачевский), но и оценил нижние пределы радиуса кривизны пространства для сферической и псевдосферической геометрии космоса. Не достигнув и тридцати лет, он стал профессором Гёттингенского университета и директором университетской обсерватории, в 1909 году был избран членом лондонского Королевского астрономического общества и возглавил Потсдамскую астрофизическую обсерваторию, а еще через четыре года стал действительным членом Прусской академии наук. Известие о смерти немецкого солдата, павшего под Верденом Стройную научную карьеру Шварцшильда оборвала Первая мировая война. Он не подлежал призыву по возрасту, но пошел в армию добровольцем и в конце концов оказался на русском фронте в штабе артиллерийской части, где занимался вычислением траекторий снарядов дальнобойных орудий. Там он стал жертвой пемфигуса, или пузырчатки, очень тяжелого аутоиммунного заболевания кожных покровов, к которому имел наследственную склонность. Эта патология плохо поддается лекарствам и в наше время, а тогда и вовсе была неизлечимой.

В марте 1916 года Шварцшильд был комиссован и вернулся в Потсдам, где скончался 11 мая. Он был одним из самых крупных физиков, чьи жизни унесла Первая мировая. Также можно вспомнить Генри Мозли, одного из основоположников рентгеновской спектроскопии. Он служил офицером связи и погиб в 27 лет в ходе Дарданелльской операции 10 августа 1915 года.

Метрика Шварцшильда

Знаменитая пространственно-временная метрика (или четырехтензор) Шварцшильда исторически стала первым точным решением уравнений ОТО. Она описывает статическое гравитационное поле, которое создается в вакууме неподвижным сферически симметричным телом массы M. В стандартной записи в координатах Шварцшильдаt, r, θ, φ имеет две особые точки (на формальном языке — сингулярности), вблизи которых один из элементов метрики стремится к нулю, а другой к бесконечности. Одна из сингулярностей возникает при r = 0, то есть там же, где обращается в бесконечность ньютоновский потенциал тяготения. Вторая сингулярность соответствует значению r = 2GM/с 2 , где G — гравитационная постоянная, M — гравитирующая масса и с — скорость света. Этот параметр обычно обозначают r s и называют радиусом Шварцшильда или гравитационным радиусом. Это уже неньютоновская сингулярность, вытекающая из уравнений ОТО, над смыслом которой мучилось несколько поколений физиков. Гравитационный радиус тела с массой Солнца равен приблизительно 3 км. Как известно, этот параметр играет ключевую роль в теории черных дыр.

Стоит напомнить, что угловые координаты Шварцшильда θ и φ полностью аналогичны полярному и азимутальному углам в обычных сферических координатах, однако величина радиальной координаты r отнюдь не равна длине радиус-вектора. В метрике Шварцшильда длина окружности с центром в начале координат выражается евклидовской формулой 2πr, однако расстояние между двумя точками с радиусами r 1 и r 2 , находящимися на одном радиус-векторе, всегда превышает арифметическую разность r 2 -r 1 . Отсюда сразу видно, что шварцшильдовское пространство неевклидово — отношение длины окружности к длине ее радиуса меньше, чем 2π.

Первый мостик к черным дырам

А теперь самое интересное. Метрика Шварцшильда, как она приведена выше, в обеих его статьях вообще отсутствует. В первой из его публикаций «О гравитационном поле точечной массы, вытекающем из теории Эйнштейна» представлена метрика пространства-времени, соответствующая полю тяготения точечной массы, которая вовсе не эквивалентна стандартной метрике, хотя внешне на нее похожа. В той метрике, которую написал сам Шварцшильд, радиальная координата имеет нижнюю положительную границу, так что сингулярность ньютоновского типа в ней отсутствует. Остается лишь сингулярность, которая возникает, когда радиус принимает свое минимальное значение, которое возникает как постоянная интегрирования. Для этой постоянной в статье Шварцшильда нет ни формулы, ни численной оценки, только обозначение α. Неформальный смысл этой сингулярности состоит в том, что точечный центр массы окружен сферой радиуса α и на этой сферической поверхности происходит нечто странное и непонятное. В подробности Шварцшильд не вдается.

Карл Шварцшильд получил свою метрику в результате решения уравнений Эйнштейна в их первой версии, с которой он ознакомился 18 ноября. На ее основе он подтвердил величину вычисленного Эйнштейном аномального поворота орбиты Меркурия. Он также вывел релятивистский аналог третьего закона Кеплера — однако только для круговых орбит. Конкретно, он показал, что квадрат угловой скорости пробных тел, обращающихся по таким орбитам вокруг центральной точки, дается простой формулой n 2 = α/2R 3 (буквой n Шварцшильд обозначает угловую скорость; R — радиальная координата). Поскольку R не может быть меньше, чем α, угловая скорость имеет верхний предел n 0 = 1/(√2α).

Напомню, что в ньютоновской механике угловая скорость тел, обращающихся вокруг точечной массы, может быть сколь угодно большой, так что тут зримо видна специфика ОТО.

Формула для n 0 выглядит необычно из-за ее размерности. Это связано с тем, что Шварцшильд принимает скорость света за единицу. Чтобы получить угловую скорость с обычной размерностью 1/сек, надо правую часть формулы для n 0 умножить на скорость света c.

Изюминку Шварцшильд приберег под занавес. В конце статьи он отметил, что если величина точечной массы в начале координат равна массе Солнца, то максимальная частота обращения оказывается примерно 10 тыс. оборотов в секунду. Отсюда сразу следует, что α = 10 -4 с/2π√2. Так как с = 3×10 5 км/сек, параметр α оказывается приблизительно равным 3 км, то есть гравитационному радиусу Солнца! Не появившись в статье Шварцшильда явно, это число проникло туда с черного хода и без какого-либо обоснования (Шварцшильд ведь не уточнил, как он получил численную величину предельной частоты). В общем, уже первая статья Шварцшильда прокладывает очень тонкий мостик к теории черных дыр, хотя обнаружить его не так-то просто. Заметив это, я немало удивился, поскольку принято считать, что гравитационный радиус появляется только во второй статье Шварцшильда.

Второй мостик к черным дырам

Вторая статья Шварцшильда называется «О гравитационном поле сферы, заполненной несжимаемой жидкостью, вычисленном в соответствии с теорией Эйнштейна» . В ней (напомню, уже на базе полной системы уравнений ОТО) вычислены две метрики: для внешнего пространства и для пространства внутри сферы. В конце этой статьи впервые появляется гравитационнный радиус 2GM/с 2 , только выраженный в других единицах и никак специально не названный. Как отмечает Шварцшильд, в случае тела с массой Солнца он равен 3 км, а для массы в 1 г равен 1,5×10 -28 см.

Но эти числа еще не самое интересное. Шварцшильд также указывает, что радиус сферического тела, измеренный внешним наблюдателем, не может быть меньше его гравитационного радиуса. Отсюда следует, что точечная масса, о которой шла речь в первой статье Шварцшильда, также представляется извне в виде сферы. Физически это связано с тем, что никакой световой луч не может приблизиться к этой массе ближе, чем на ее гравитационный радиус, а затем вернуться к внешнему наблюдателю. В статье Шварцшильда этих утверждений нет, но они прямо следуют из ее логики. Это второй мостик к концепции черных дыр, который можно найти у самого Шварцшильда.

Эпилог

Сферически симметричными решениями уравнений ОТО после Шварцшильда занимались и чистые математики, и физики, и космологи. Весной 1916 года голландец Йоханнес Дросте, который заканчивал в Лейденском университете докторскую диссертацию под руководством Хендрика Лоренца, представил шефу для публикации работу, в которой вычислил метрику пространства-времени для точечной массы проще, чем это сделал Шварцшильд (о его результататх Дросте еще не успел узнать). Именно Дросте первым опубликовал ту версию метрики, которая позже стала считаться стандартной .

В ходе последующей шлифовки решения Шварцшильда был также обнаружен совершенно различный характер сингулярностей: одну, возникающую в стандартной форме метрики при г = rs, как выяснилось, можно устранить заменой координат, другая, возникающая при r = 0, оказалась неустранимой и физически соответствует бесконечности поля тяготения.

Всё это очень интересно, но полностью выпадает за рамки моей статьи. Достаточно сказать, что математическая теория черных дыр давно и хорошо разработана и очень красива — и вся она исторически восходит к решению Шварцшильда. Что касается физической реальности черных дыр, возникающих в результате коллапса самых массивных звезд, то в нее астрономы начали верить лишь с начала 1960-х годов, после открытия первых квазаров. Но это уже совсем другая история.

1. Schwarzschild K. Zur Quantenhypothese / Sitzungsberichte der Preussischen Akademie der Wissenschaften. I (1916). P. 548−568.

2. Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie / Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften zu Berlin. Phys.-Math. Klasse 1916. P. 189−196.

3. Schwarzschild K. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie / Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften zu Berlin. Phys.-Math. Klasse. 1916. P. 424−434.

4. Droste J. The Field of a Single Center in EINSTEIN’s Theory of Gravitation, and the Motion of a Particle in that Field.Proc. K. Ned. Akad. Wet. Ser. A 19. 197 (1917).

См. также: Портал:Физика

Ме́трика Шва́рцшильда - это единственное в силу теоремы Биркхофа сферически симметричное точное решение уравнений Эйнштейна без космологической константы в пустом пространстве. В частности, эта метрика достаточно точно описывает гравитационное поле уединённой невращающейся и незаряженной чёрной дыры и гравитационное поле снаружи от уединённого сферически симметричного массивного тела. Названа в честь Карла Шварцшильда , который первым её обнаружил.

Это решение необходимо является статическим, так что сферические гравитационные волны оказываются невозможными.

Вид метрики

Шварцшильдовские координаты

В так называемых Шварцшильдовских координатах , из которых 3 последних аналогичны сферическим , метрический тензор наиболее физически важной части пространства-времени Шварцшильда с топологией (произведение области двумерного евклидова пространства и двумерной сферы) имеет вид

Координата не является длиной радиус-вектора, а вводится так, чтобы площадь сферы в данной метрике была равна . При этом «расстояние» между двумя событиями с разными (но одинаковыми остальными координатами) даётся интегралом

При или метрика Шварцшильда стремится (покомпонентно) к метрике Минковского в сферических координатах, так что вдали от массивного тела пространство-время оказывается приблизительно псевдоевклидовым сигнатуры . Так как при и монотонно возрастает с ростом , то собственное время в точках вблизи тела «течёт медленнее», чем вдалеке от него, то есть происходит своеобразное гравитационное замедление времени массивными телами.

Дифференциальные характеристики

Обозначим

Тогда не равные нулю независимые символы Кристоффеля имеют вид

Тензор кривизны относится к типу по Петрову .

Дефект массы

Если имеется сферически симметричное распределение материи «радиуса» (с точки зрения координат) , то полная масса тела может быть выражена через его тензор энергии-импульса по формуле

В частности, для статического распределения вещества , где - плотность энергии в пространстве. Учитывая, что объём шарового слоя в выбранных нами координатах равен

получим, что

Это различие выражает собой гравитационный дефект массы тела . Можно сказать, что часть полной энергии системы содержится в энергии гравитационного поля, хотя локализовать эту энергию в пространстве невозможно.

Особенность в метрике

На первый взгляд, метрика содержит две особенности: при и при . Действительно, в Шварцшильдовских координатах частице, падающей на тело, потребуется бесконечно большое время для достижения поверхности , однако переход, например, к координатам Леметра в сопутствующей системе отсчёта показывает, что с точки зрения падающего наблюдателя никакой особенности пространства-времени на данной поверхности нет, причём как сама поверхность, так и область будут достигнуты за конечное собственное время .

Реальная особенность метрики Шварцшильда наблюдается лишь при , где стремятся к бесконечности скалярные инварианты тензора кривизны . Эта особенность (сингулярность) не может быть устранена сменой системы координат.

Горизонт событий

Поверхность называется горизонтом событий . При более удачном выборе координат, например в координатах Леметра или Крускала, можно показать, что никакие сигналы не могут выйти из чёрной дыры через горизонт событий. В этом смысле не удивительно, что поле вне Шварцшильдовской чёрной дыры зависит лишь от одного параметра - полной массы тела.

Координаты Крускала

Можно попытаться ввести координаты, не дающие сингулярности при . Таких координатных систем известно множество, и самой часто встречающейся из них является система координат Крускала, которая покрывает одной картой всё максимально продолженное многообразие, удовлетворяющее вакуумным уравнениям Эйнштейна (без космологической постоянной). Это большее пространство-время называется обычно (максимально продолженным) пространством Шварцшильда или (реже) пространством Крускала. Метрика в координатах Крускала имеет вид

где , а функция определяется (неявно) уравнением .

Рис. 1. Сечение пространства Шварцшильда. Каждой точке на рисунке соответствует сфера площадью . Светоподобные геодезические (то есть мировые линии фотонов) - это прямые под углом к вертикали, иначе говоря - это прямые или

Пространство максимально , то есть его уже нельзя изометрически вложить в большее пространство-время, а область в координатах Шварцшильда () является всего лишь частью (это область - область I на рисунке). Тело, движущееся медленнее света - мировая линия такого тела будет кривой с углом наклона к вертикали меньше , см. кривую на рисунке - может покинуть . При этом оно попадает в область II, где . Покинуть эту область и вернуться к оно, как видно из рисунка, уже не сможет (для этого пришлось бы отклониться более, чем на от вертикали, то есть превысить скорость света). Область II таким образом представляет собой чёрную дыру. Её граница (ломаная, ) соответственно является горизонтом событий.

В есть ещё одна асимптотически плоская область III, в которой также можно ввести Шварцшильдовы координаты. Однако эта область причинно не связана с областью I, что не позволяет получить о ней никакой информации, оставаясь снаружи от горизонта событий. В случае реального коллапса астрономического объекта области IV и III просто не возникают, так как левую часть представленной диаграммы необходимо заменить на непустое пространство-время, заполненное коллапсирующей материей.

Отметим несколько замечательных свойств максимально продолженного Шварцшильдовского пространства :

Орбитальное движение

Основная статья: Проблема Кеплера в общей теории относительности

История получения и интерпретации

Метрика Шварцшильда, выступая как объект значительного теоретического интереса, для специалистов-теоретиков является также неким инструментом, с виду простым, но тем не менее сразу же приводящим к трудным вопросам.

В середине 1915 года Эйнштейн опубликовал предварительные уравнения теории гравитации . Это были ещё не уравнения Эйнштейна, но они уже совпадали с окончательными в вакуумном случае . Сферически-симметричные уравнения для вакуума Шварцшильд проинтегрировал в период с 18 ноября 1915 г. до конца года. 9 января 1916 г. Эйнштейн, к которому Шварцшильд обратился по поводу публикации своей статьи в «Berliner Berichte», написал ему, что «прочитал его работу с огромной страстью» и «был ошеломлён, что истинное решение этой проблемы можно выразить столь легко» - Эйнштейн исходно сомневался, возможно ли вообще получить решение таких сложных уравнений.

Шварцшильд закончил свою работу в марте, получив также сферически-симметричное статическое внутреннее решение для жидкости с постоянной плотностью. В это время на него навалилась болезнь (пузырчатка), которая в мае свела его в могилу. С мая 1916 г. И. Дросте, ученик Г. А. Лоренца, проводя исследования в рамках окончательных эйнштейновских уравнений поля, получил решение той же задачи более простым методом, чем Шварцшильд. Ему же принадлежит первая попытка анализа расходимости решения при стремлении к сфере Шварцшильда.

Вслед за Дросте большинство исследователей стали удовлетворяться различными соображениями, направленными на доказательство непроницаемости сферы Шварцшильда. При этом соображения теоретического характера подкреплялись физическим аргументом, согласно которому «такое в природе не существует», поскольку отсутствуют тела, атомы, звёзды, радиус которых был бы меньше шварцшильдовского радиуса.

Для К. Ланцоша, а также для Д. Гилберта сфера Шварцшильда стала поводом задуматься над понятием «сингулярность», для П. Пенлеве и французской школы она являлась объектом полемики, в которую включился Эйнштейн.

В ходе парижского коллоквиума 1922 г., организованного в связи с приездом Эйнштейна, речь зашла не только об идее, согласно которой радиус Шварцшильда не будет сингулярным, но также и о гипотезе, предвосхищающей то, что сегодня называют гравитационным коллапсом .

Искусная разработка Шварцшильда имела лишь относительный успех. Ни его метод, ни его интерпретация не были взяты на вооружение. Из его работы не сохранили почти ничего, кроме «голого» результата метрики, с которой связали имя её создателя. Но вопросы интерпретации и прежде всего вопрос «сингулярности Шварцшильда» тем не менее решены не были. Cтала выкристаллизовываться точка зрения, что эта сингулярность не имеет значения. К этой точке зрения вели два пути: с одной стороны, теоретический, согласно которому «сингулярность Шварцшильда» непроницаема, и с другой стороны, эмпирический, состоящий в том, что «этого в природе не существует». Эта точка зрения распространилась и стала доминирующей во всей специальной литературе того времени.

Следующий этап связан с интенсивным исследованием вопросов гравитации в начале «золотого века» теории относительности.

Литература

  • K. Schwarzschild Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie // Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 1. - 1916. - 189-196.
    Рус. пер.: Шварцшильд К. О гравитационном поле точечной массы в эйнштейновской теории // Альберт Эйнштейн и теория гравитации. М.: Мир, 1979. С. 199-207.
  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7
  • Droste J. Het van een enkel centrum in Einstein s theorie der zwaartekracht en de beweging van een stoffelijk punt in dat veld // Versl. gev Vergad. Akad. Amsterdam. - 1916. - D.25. - Biz.163-180.
  • - пространство время вне массивного невращающегося тела в вакууме (тензор Риччи Rik = 0). Элемент длины ds определяется выражением где r,q, f сферические координаты с центром в центре массивного тела, M масса тела. Это решение ур ний Эйнштейна… … Физическая энциклопедия

    Метрика пространства-времени - (см. Метрика, Пространство Время) основной закон, определяющий геометрические свойства четырехмерного пространства времени Минковского, Римана, Шварцшильда и др. Указанная метрика играет фундаментальное значение в формулировке физических законов … Начала современного естествознания

    Метрический тензор или метрика это симметричный тензор ранга 2 на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д. В частном случае… … Википедия

    Гравитационный радиус (или радиус Шварцшильда) в Общей теории относительности (ОТО) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы, на которой находился бы горизонт событий,… … Википедия

    Это метрика определяющая статическое изотропное гравитационное поле. Частным случаем этой метрики является метрика Шварцшильда, на случай пустого (ничем не заполненного) пространства времени. Содержание 1 Определение … Википедия

    Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности … Википедия

    Решение уравнений Эйнштейна, описывающее внешнее гравитационное поле вращающегося источника с массой ти угловым моментом L. Относится к типу Dпо классификации А. З. Петрова. Наиболее просто записывается в виде метрики Керра Шильда: где К m… … Математическая энциклопедия

Гравитация [От хрустальных сфер до кротовых нор] Петров Александр Николаевич

Решение Шварцшильда

Решение Шварцшильда

Для того чтобы обсудить многие эффекты ОТО, необходимо познакомиться с одним из самых важных решений (а возможно, и самым важным) уравнений ОТО – решением немецкого астронома Карла Шварцшильда (1873–1916). Оно получено в 1916 году, всего лишь через несколько месяцев после публикации Эйнштейном своих уравнений гравитационного поля. Это решение соответствует статическому сферически симметричному вакуумному пространству-времени. (О вакуумных решениях уравнений Эйнштейна см. Дополнение 4.) Слова, выделенные курсивом – это условия (ограничения), при которых искалось решение. Эти же условия определяют, чему в реальности должно соответствовать найденное решение – это пространство-время вокруг изолированного сферически симметричного тела. «Изолированного» – это в идеале, а в реальности – вокруг тела, достаточно удаленного от всех остальных тел. Таким образом, в очень хорошем приближении это решение описывает и гравитационное поле вокруг Солнца и каждой из планет Солнечной системы, шаровых звездных скоплений. Поэтому с использованием именно этого решения были проверены первые эффекты ОТО.

Решение Шварцшильда в математическом плане простое, поэтому мы немного с ним повозимся. Собственно, решением уравнений явилась метрика:

Здесь также в силу сферической симметрии мы опустили угловую часть, оставив только временную и радиальную. C – постоянная интегрирования, без дополнительных предположений или принципов ее определить невозможно. Здесь самое время обратиться к принципу соответствия. При «бесконечном» удалении от центра r ? ? эта метрика обращается в метрику пространства Минковского в сферических координатах, точно так же, как и метрика пространства-времени Ньютона, которую мы уже обсуждали. Значит, на достаточном удалении нам необходимо сравнить новую метрику с метрикой пространства-времени Ньютона, обсуждавшейся в предыдущей главе. При аккуратной процедуре приближения оказывается, что здесь основное возмущение в метрику плоского мира вносится только первым слагаемым в выражении для интервала. Нужно сравнить его с аналогичным членом в метрике Ньютона. Это нам даст C = –2GM /c 2 , после чего метрика Шварцшильда запишется в окончательном виде:

где величина r g = 2GM /c 2 называется гравитационным радиусом . Мы так подробно обсуждаем решение Шварцшильда потому, что это еще и базовое решения для черных дыр, речь о которых впереди. Также потом мы обсудим смысл гравитационного радиуса. А сейчас важно отметить, что появился параметр, определяющий решение , – это масса тела M , обращение в нуль этого параметра превращает решение Шварцшильда в метрику плоского мира.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Решение головоломки: как, кто, где и когда? Как. По сути, мы до сих пор не знаем, как исходные кирпичики Вселенной обрели свою массу, и у нас даже нет уверенности, что мы установили все эти кирпичики. И все же мы располагаем теоретическими и опытными возможностями для

Из книги «Вы, конечно, шутите, мистер Фейнман!» автора Фейнман Ричард Филлипс

Решение головоломки: как, кто и почему? Как. Рассмотрим с позиции научного метода две основные, допускающие проверку гипотезы о происхождении жизни на Земле.Гипотеза 1Панспермия Хойла - Викрамасингха.Предсказание: если бактерии обитают на ядрах комет, то жизнь или по

Из книги История лазера автора Бертолотти Марио

Решение головоломки: почему, как, кто и где, когда? Почему.Протеомика дает возможность создавать новые, более действенные лекарства и диагностические средства. Однако число пар азотистых оснований, генов и белков, с которыми приходится иметь дело, ставит трудную задачу

Из книги Распространненость жизни и уникальность разума? автора Мосевицкий Марк Исаакович

Решение головоломки: где, когда, как и кто? С точки зрения теории существует несколько возможностей учета темной энергии:? Возвращение космологической постоянной Эйнштейна. Будет забавно, если окажется невозможным обойтись без «самой крупной ошибки» Эйнштейна. Ведь

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Из книги автора

ГЛАВА 14 РЕШЕНИЕ В ПОИСКЕ ПРОБЛЕМЫ ИЛИ МНОГИЕ ПРОБЛЕМЫ С ОДНИМ И ТЕМ ЖЕ РЕШЕНИЕМ? ПРИМЕНЕНИЯ ЛАЗЕРОВ В 1898 г. г. Уэллс вообразил в своей книге «Война миров» захват Земли марсианами, которые использовали лучи смерти, способные без труда проходить через кирпичи, сжигать леса, и

Из книги автора

Из книги автора

Снова решение Шварцшильда Пример невидимой звезды Мичелла-Лапласа, хотя и основан на теории, которая не в состоянии дать правильные решения для реальных черных дыр со всем многообразием эффектов и необычных свойств, демонстрирует самое главное их свойство. Черная дыра

Из книги автора

4. Решение уравнений Эйнштейна Но если есть уравнения, значит их нужно решать. То есть при ограничениях и условиях каждой конкретной задачи или модели нужно найти метрические коэффициенты в каждой точке пространства-времени и тем самым определить его геометрические

Выражения для компонентов тензора и через функции v и А являются следующими

Только выражение для компонента является громоздким, но так происходит, что его точное выражение редко бывает необходимо использовать.

Важное положение состоит в том, что дивергенция этого тензора должна быть равна нулю. Если мы имеем выражение для других компонентов, то требование обращения в нуль дивергенции часто помогает избежать использования точного выражения для .

В этом месте могут быть предложены следующие упражнения.

1) Доказать, что если нет материи внутри сферы радиуса b и распределение материи вне этой сферы является сферически симметричным, то пространство внутри сферы - плоское с метрикой .

2) Доказать, что если тензор энергии-импульса известен всюду внутри сферы радиуса то каким бы он ни был вне этой сферы, это не повлияет на физику внутри сферы радиуса (Предполагается, что вне этой сферы тензор энергии-импульса характеризуется сферически симметричным распределением.)

Решение вне сферически симметричного распределения массы получается, если мы положим решим получившиеся дифференциальные уравнения.

Мы начнем с того, что заметим, что зависит только от А. Так как равен нулю, то мы получаем

Множитель 2 взят для удобства, так что постоянная величина есть полная масса звезды, умноженная на ньютоновскую гравитационную постоянную. Если внутри сферы радиуса , где находится вся масса, нет особенностей, то постоянная должна быть равна

(11.3.3)

Мы уверены, что зависимость от времени отсутствует, поскольку

так что А вообще не зависит от времени. Последняя задача состоит в том, чтобы получить выражение для . Мы делаем это, приравнивая так как обе эти величины равны нулю. Отсюда приходим к выводу, что

Которое может происходить только в том случае, если функция v имеет следующий вид:

(11.3.5)

где - произвольная функция времени. Тем не менее, так как функция v появляется в коэффициенте при величине в метрике следующим образом:

мы можем исключить множитель изменяя масштаб временной координаты. Другие элементы метрического тензора не изменяются при такой замене, так как в них включена только функция . Полученный результат известен как метрика Шварцшильда

Интересно, что полученная метрика не зависит от времени, хотя мы никогда не говорили о том, что мы ищем статическое решение. Отсутствие зависимости от времени метрики Шварцшильда следует из предположения о сферической симметрии и того, что мы рассматриваем метрику в области с нулевой плотностью давления.

Для случая реальной звезды такой, как Солнце, точной сферической симметрии нет, поскольку имеется вращение и поскольку имеется утолщение () на экваторе. Тем не менее, эти отличия вызывают лить небольшие отклонения от случая сферической симметрии. Если имеется световой поток от звезды, то будут появляться другие поправки, поскольку плотность энергии не будет равной нулю в пространстве вне звезды. Тем не менее, решение Шварцшильда достаточно точно описывает ситуацию с Солнцем, так что прецессия перигелия Меркурия задается правильно в пределах ошибок измерения.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама