THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Образуется направленным движением свободных электронов и что при этом никаких изменений вещества, из которого проводник сделан, не происходит.

Такие проводники, в которых прохождение электрического тока не сопровождается химическими изменениями их вещества, называются проводниками первого рода . К ним относятся все металлы, уголь и ряд других веществ.

Но есть в природе и такие проводники электрического тока, в которых во время прохождения тока происходят химические явления. Эти проводники называются проводниками второго рода . К ним относятся главным образом различные растворы в воде кислот, солей и щелочей.

Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (или какой-либо другой кислоты или щелочи), а затем взять две металлические пластины и присоединить к ним проводники опустив эти пластины в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, причем оно будет продолжаться непрерывно, пока замкнута цепь т.к. подкисленная вода действительно является проводником. Кроме того, пластины начнут покрываться пузырьками газа. Затем эти пузырьки будут отрываться от пластин и выходить наружу.

При прохождении по раствору электрического тока происходят химические изменения, в результате которых выделяется газ.

Проводники второго рода называются электролитами , а явление, происходящее в электролите при прохождении через него электрического тока, - .

Металлические пластины, опущенные в электролит, называются электродами; одна из них, соединенная с положительным полюсом источника тока, называется анодом , а другая, соединенная с отрицательным полюсом,- катодом .

Чем же обусловливается прохождение электрического тока в жидком проводнике? Оказывается, в таких растворах (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в данном случае воды) распадаются на две составные части, причем одна частица молекулы имеет положительный электрический заряд, а другая отрицательный.

Частицы молекулы, обладающие электрическим зарядом, называются ионами . При растворении в воде кислоты, соли или щелочи в растворе возникает большое количество как положительных, так и отрицательных ионов.

Теперь должно стать понятным, почему через раствор прошел электрический ток, ведь между электродами, соединенными с источником тока, создана , иначе говоря, один из них оказался заряженным положительно, а другой отрицательно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду - катоду, а отрицательные ионы - к аноду.

Таким образом, хаотическое движение ионов стало упорядоченным встречным движением отрицательных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электрического тока через электролит и происходит до тех пор, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.

В качестве примера рассмотрим явление электролиза при пропускании электрического тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.

Явление электролиза при прохождении тока через раствор медного купороса: С - сосуд с электролитом, Б - источник тока, В - выключатель

Здесь также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным - ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к себе недостающие электроны), т. е. превращаться в нейтральные молекулы чистой меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.

Отрицательные ионы, достигнув анода, также разряжаются (отдают излишние электроны). Но при этом они вступают в химическую реакцию с медью анода, в результате чего к кислотному остатку SO4 присоединяется молекула меди Сu и образуется молекула медного купороса СuS О4 , возвращаемая обратно электролиту.

Так как этот химический процесс протекает длительное время, то на катоде отлагается медь, выделяющаяся из электролита. При этом электролит вместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода - анода.

Тот же самый процесс происходит, если вместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса Zn SO4. Цинк также будет переноситься с анода на катод.

Таким образом, разница между электрическим током в металлах и жидких проводниках заключается в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах переносится разноименно заряженными частицами вещества - ионами, двигающимися в противоположных направлениях. Поэтому говорят, что электролиты обладают ионном проводимостью.

Явление электролиза было открыто в 1837 г. Б. С. Якоби, который производил многочисленные опыты по исследованию и усовершенствованию химических источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электрического тока покрывается медью.

Это явление, названное гальванопластикой , находит сейчас чрезвычайно большое практическое применение. Одним из примеров тому может служить покрытие металлических предметов тонким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.

Газы (в том числе и воздух) в обычных условиях не проводят электрический ток. Например, голые , будучи подвешены параллельно друг другу, оказываются изолированными один от другого слоем воздуха.

Однако под воздействием высокой температуры, большой разности потенциалов и других причин газы, подобно жидким проводникам, ионизируются , т. е. в них появляются в большом количестве частицы молекул газа, которые, являясь переносчиками электричества, способствуют прохождению через газ электрического тока.

Но вместе с тем ионизация газа отличается от ионизации жидкого проводника. Если в жидкости происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.

Стоит только прекратить ионизацию газа, как он перестанет быть проводящим, тогда как жидкость всегда остается проводником электрического тока. Следовательно, проводимость газа - явление временное, зависящее от действия внешних причин.

Однако есть и другой , называемый дуговым разрядом или просто электрической дугой. Явление электрической дуги было открыто в начале 19-го столетия первым русским электротехником В. В. Петровым.

В. В. Петров, проделывая многочисленные опыты, обнаружил, что между двумя древесными углями, соединенными с источником тока, возникает непрерывный электрический разряд через воздух, сопровождаемый ярким светом. В своих трудах В. В. Петров писал, что при этом "темный покой достаточно ярко освещен быть может". Так впервые был получен электрический свет, практически применил который еще один русский ученый-электротехник Павел Николаевич Яблочков.

"Свеча Яблочкова", работа которой основана на использовании электрической дуги, совершила в те времена настоящий переворот в электротехнике.

Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах. Высокая температура дугового разряда позволяет использовать его для . В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла.

В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков используется так называемый тлеющий газовый разряд .

Искровой разряд применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

Вода, как универсальный растворитель.. Водные растворы.. Электролитическая диссоциация.. Электролит.. Слабые и сильные электролиты.. Носители электрических зарядов в жидкости.. Положительные и отрицательные ионы.. Электролиз.. Расплавы.. Природа электрического тока в расплавах..

Одним из условий возникновения электрического тока является наличие свободных зарядов, способных двигаться под действием электрического поля. О природе электрического тока в металлах мы говорили и.
В этом уроке мы попытаемся разобраться, какие частицы переносят электрический заряд в жидкостях и расплавах.

Вода, как универсальный растворитель

Как мы знаем, дистиллированная вода не содержит носителей зарядов и поэтому не проводит электрический ток, т. е. является диэлектриком. Однако наличие каких-либо примесей уже делает воду достаточно хорошим проводником.
Вода обладает феноменальной способностью растворять в себе почти все химические элементы. При растворении в воде различных веществ (кислот, щелочей, оснований, солей и др.) раствор становится проводником из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор – электролитом, способным проводить электрический ток. Все водные бассейны на Земле в большей или меньшей степени являются природными электролитами.

Мировой океан представляет собой раствор ионов практически всех элементов таблицы Менделеева.

Желудочный сок, кровь, лимфа, все жидкости в организме человека являются электролитами. Все животные и растения также в основном состоят из электролитов.

По степени диссоциации есть слабые и сильные электролиты. Вода относится к слабым электролитам, а большинство неорганических кислот относится к сильным электролитам. Электролиты еще называют проводниками второго рода.

Носители электрических зарядов в жидкости

При растворении в воде (или в другой жидкости) различных веществ, они распадаются на ионы.
Например, обыкновенная поваренная соль NaCl (хлорид натрия) в воде разделяется на положительные ионы натрия (Na +) и отрицательные ионы хлора (Cl -). Если два полюса в полученном электролите находятся под различными потенциалами, то отрицательные ионы дрейфуют к положительному полюсу, в то время как положительные ионы дрейфуют к отрицательному полюсу.

Таким образом, электрический ток в жидкости состоит из потоков положительных и отрицательных ионов, направленных навстречу друг другу.

В то время как абсолютно чистая вода является изолятором, вода, содержащая даже небольшие примеси (естественные либо привнесенные извне) ионизированного вещества, является проводником электрического тока.

Электролиз

Поскольку положительные и отрицательные ионы растворенного вещества под воздействием электрического поля дрейфуют в разные стороны, вещество постепенно разделяется на две части.

Такое разделение вещества на составляющие его элементы называется электролизом.

Электролиты используются в электрохимии, в химических источниках тока (гальванические элементы и батареи), в производственных процессах гальваники и других технологиях, основанных на движении электрических зарядов в жидкостях под действием электрического поля.

Расплавы

Диссоциация вещества возможна и без участия воды. Достаточно расплавить кристаллы химического состава вещества и получить расплав. Расплавы вещества так же, как водные электролиты являются проводниками второго рода, а потому их можно называть электролитами. Электрический ток в расплавах имеет ту же природу, что и ток в водных электролитах – это встречные потоки положительных и отрицательных ионов.

Используя расплавы, в металлургии получают алюминий электролитическим способом из глинозема. Электрический ток пропускается через оксид алюминия и в процессе электролиза у одного из электродов (катода), накапливается чистый алюминий. Это очень энергоемкий процесс, который по энергопотреблению напоминает разложение воды на водород и кислород с помощью электрического тока.

В цехе электролиза алюминия

Всем знакомо определение электрического тока. Оно представляется как направленное движение заряженных частиц. Подобное движение в различных средах имеет принципиальные отличия. Как основной пример этого явления можно представить течение и распространение электрического тока в жидкостях . Такие явления характеризуются различными свойствами и серьезно отличаются от упорядоченного движения заряженных частиц, которое происходит в обычных условиях не под воздействием различных жидкостей.

Рисунок 1. Электрический ток в жидкостях. Автор24 - интернет-биржа студенческих работ

Формирование электрического тока в жидкостях

Несмотря на то, что процесс проводимости электрического тока осуществляется посредством металлических приборов (проводников), ток в жидкостях лежит в зависимости от движения заряженных ионов, которые приобрели или потеряли по некой определенной причине подобные атомы и молекулы. Показателем такого движения выступает изменение свойств определенного вещества, где проходят ионы. Таким образом, нужно опираться на основное определение электрического тока, чтобы сформировать специфическое понятие формирования тока в различных жидкостях. Определено, что разложение отрицательно заряженных ионов способствует движению в область источника тока с положительными значениями. Положительно заряженные ионы в таких процессах будут двигаться в противоположном направлении – к отрицательному источнику тока.

Жидкие проводники делятся на три основных типа:

  • полупроводники;
  • диэлектрики;
  • проводники.

Определение 1

Электролитическая диссоциация - процесс разложения молекул определенного раствора на отрицательные и положительные заряженные ионы.

Можно установить, что электроток в жидкостях может возникать после изменения состава и химического свойства используемых жидкостей. Это напрочь противоречит теории распространения электрического тока иными способами при использовании обычного металлического проводника.

Опыты Фарадея и электролиз

Течение электрического тока в жидкостях – это продукт процесса перемещения заряженных ионов. Проблемы, связанные с возникновение и распространением электротока в жидкостях, стали причиной изучения знаменитого ученого Майкла Фарадея. Он при помощи многочисленных практических исследований смог найти доказательства, что масса вещества, выделяемая в процессе электролиза, зависит от количества времени и электричества. При этом имеет значение время, в течение которого проводились эксперименты.

Также ученый смог выяснить, что в процессе электролиза при выделении определенного количества вещества необходимо одинаковое количество электрических зарядов. Это количество удалось точно установить и зафиксировать в постоянной величине, которая получила название числа Фарадея.

В жидкостях электрический ток имеет иные условия распространения. Он взаимодействует с молекулами воды. Они в значительной степени затрудняют все передвижения ионов, что не наблюдалось в опытах с использование обычного металлического проводника. Из этого следует, что образование тока при электролитических реакциях будет не столь большим. Однако при увеличении температуры раствора проводимость постепенно увеличивается. Это означает, что напряжение электрического тока растет. Также в процессе электролиза было замечено, что вероятность распада определенной молекулы на отрицательные или положительные заряды ионов увеличивается из-за большого числа молекул используемого вещества или растворителя. При насыщении раствора ионами сверх определенной нормы, происходит обратный процесс. Проводимость раствора вновь начинает снижаться.

В настоящее время процесс электролиза нашел свое применения во многих областях и сферах науки и на производстве. Промышленные предприятия его используют при получении или обработке металла. Электрохимические реакции участвуют в:

  • электролизе солей;
  • гальванике;
  • полировке поверхностей;
  • иных окислительно-восстановительных процессах.

Электрический ток в вакууме и жидкостях

Распространение электрического тока в жидкостях и иных средах представляет собой довольно сложный процесс, который имеет собственные характеристики, особенности и свойства. Дело в том, что в подобных средах полностью отсутствуют заряды в телах, поэтому их принято называть диэлектриками. Главной целью исследований стало то, чтобы создать такие условия, при которых атомы и молекулы могли бы начать свое движения и процесс образования электрического тока начался. Для этого принято использовать специальные механизмы или устройства. Основным элементом таких модульных устройств стали проводники в виде металлических пластин.

Для определения основных параметров тока необходимо воспользоваться известными теориями и формулами. Самым распространенным являются закон Ома. Он выступает в роли универсальной амперной характеристики, где осуществляется принцип зависимости тока от напряжения. Напомним, что напряжение измеряется в единице Ампер.

Для проведения опытов с водой и солью необходимо подготовить сосуд с соленой водой. Это даст практическое и визуальное представление о процессах, которые происходят при образовании электрического тока в жидкостях. Также установка должна содержать электроды прямоугольной формы и источники питания. Для полномасштабной подготовки к опытам нужно иметь амперную установку. Она поможет провести энергию от сети питания к электродам.

В роли проводников будут выступать металлические пластины. Их опускают в используемую жидкость, а затем подключается напряжение. Сразу начинается перемещение частиц. Оно проходит в хаотичном режиме. При возникновении магнитного поля между проводниками все процессе движения частиц упорядочиваются.

Ионы начинают меняться зарядами и объединяться. Таким образом, катоды становятся анодами, а аноды – катодами. В этом процессе необходимо также учитывать еще несколько важных факторов:

  • уровень диссоциации;
  • температура;
  • электрическое сопротивление;
  • использование переменного или постоянного тока.

В конце эксперимента происходит образование слоя соли на пластинах.

Жидкости, как и любые другие вещества, могут быть проводниками, полупроводниками и диэлектриками. Например, дистиллированная вода будет являться диэлектриком, а растворы и расплавы электролитов будут являться проводниками. Полупроводниками будут являться, например, расплавленный селен или расплавы сульфидов.

Ионная проводимость

Электролитическая диссоциация - это процесс распадения молекул электролитов на ионы под действием электрического поля полярных молекул воды. Степенью диссоциации называется доля молекул распавшихся на ионы в растворенном веществе.

Степень диссоциации будет зависеть от различных факторов: температура, концентрация раствора, свойства растворителя. При увеличении температуры, степень диссоциации тоже будет увеличиваться.

После того как молекулы разделились на ионы, они движутся хаотично. При этом два иона разных знаков могут рекомбинироваться, то есть снова объединиться в нейтральные молекулы. При отсутствии внешних изменений в растворе должно установиться динамическое равновесие. При нем число молекул которое распалось на ионы за единицу времени, будет равняться числу молекул, которые снова объединятся.

Носителями зарядов в водных растворах и расплавах электролитов будут являться ионы. Если сосуд с раствором или расплавом включить в цепь, то положительно заряженные ионы начнут двигаться к катоду, а отрицательные – к аноду. В результате этого движения возникнет электрический ток. Данный вид проводимости называют ионной проводимостью.

Помимо ионной проводимости в жидкостях может обладать и электронной проводимостью. Такой тип проводимости свойственен, например, жидким металлам. Как отмечалось выше, при ионной проводимости прохождение тока связано с переносом вещества.

Электролиз

Вещества которые входят в состав электролитов, будут оседать на электродах. Этот процесс называется в электролизом. Электролиз – процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями.

Электролиз нашел широкое применение в физике и технике. С помощью электролиза поверхность одного металла покрывают тонким слоем другого металла. Например, хромирование и никелирование.

С помощью электролиза можно получить копию с рельефной поверхности. Для этого необходимо, чтобы слой металла, который осядет на поверхности электрода, легко можно было снять. Для этого иногда на поверхность наносят графит.

Процесс получения таких легко отслаиваемых покрытий получил название гальвано-пластика. Этим метод разработал русский ученый Борис Якоби при изготовлении полых фигур для Исаакиевского собора с Санкт-Петербурге.

Практически каждому человеку известно определение электрического тока как Однако все дело в том, что происхождение и движение его в различных средах достаточно сильно отличается друг от друга. В частности, электрический ток в жидкостях обладает несколько другими свойствами, чем Речь идет о тех же металлических проводниках.

Основное отличие состоит в том, что ток в жидкостях - это движение заряженных ионов, то есть атомов или даже молекул, которые по какой-либо причине потеряли или приобрели электроны. При этом одним из показателей этого движения является изменение свойств того вещества, по которому данные ионы проходят. Опираясь на определение электрического тока, мы можем предположить, что при разложении отрицательно заряженные ионы будут двигаться в сторону положительного а положительные, наоборот, к отрицательному.

Процесс разложения молекул раствора на положительные и отрицательные заряженные ионы получил в науке название электролитической диссоциации. Таким образом, электрический ток в жидкостях возникает вследствие того, что, в отличие от того же металлического проводника, изменяется состав и химические свойства этих жидкостей, результатом чего является процесс перемещения заряженных ионов.

Электрический ток в жидкостях, его происхождение, количественные и качественные характеристики были одной из главных проблем, изучением которой долгое время занимался знаменитый физик М. Фарадей. В частности, с помощью многочисленных экспериментов ему удалось доказать, что масса выделяемого при электролизе вещества напрямую зависит от количества электричества и времени, в течении которого этот электролиз осуществлялся. Ни от каких других причин, за исключением рода вещества, эта масса не зависит.

Кроме того, изучая ток в жидкостях, Фарадей экспериментально выяснил, что для выделения одного килограмма любого вещества при электролизе необходимо одно и то же количество Это количество, равное 9,65.10 7 к., получило название числа Фарадея.

В отличие от металлических проводников, электрический ток в жидкостях оказывается окруженным которые значительно затрудняют передвижение ионов вещества. В связи с этим, в любом электролите возможно образование тока только небольшого напряжения. В то же время, если температура раствора повышается, то его проводимость увеличивается, а поля возрастает.

Электролиз обладает еще одним интересным свойством. Все дело в том, что вероятность распада той или иной молекулы на положительные и отрицательные заряженные ионы тем выше, чем большее число молекул собственно вещества и растворителя. В то же время, в определенный момент наступает перенасыщение раствора ионами, после чего проводимость раствора начинает снижаться. Таким образом, наиболее сильная будет проходить в растворе, где концентрация ионов крайне невелика, однако напряженность электрического тока в таких растворах будет крайне низкой.

Процесс электролиза нашел широкое применение в различных промышленных производствах, связанных с проведением электрохимических реакций. К числу наиболее важных из них можно отнести получение металла с помощью электролитов, электролиз солей, содержащих хлор и его производные, окислительно-восстановительные реакции, получение такого необходимого вещества, как водород, полировка поверхностей, гальваника. Например, на многих предприятиях машино- и приборостроения весьма распространен метод рафинирования, который представляет собой получение металла без всяких ненужных примесей.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама