THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Наиболее характерным свойством жидкости, отличающим ее от газа, является то, что на границе с газом жидкость образует свободную поверхность, наличие которой приводит к возникновению явлений особого рода, называемых поверхностными. Своим возникновением они обязаны особым физическим условиям, в которых находятся молекулы вблизи свободной поверхности.

На каждую молекулу жидкости действуют силы притяжения со стороны окружающих ее молекул, расположенных от нее на расстоянии порядка м (радиус молекулярного действия). На молекулу , расположенную внутри жидкости (рис. 1), действуют силы со стороны таких же молекул, и равнодействующая этих сил близка к нулю.

Для молекул равнодействующие сил отличны от нуля и направлены внутрь жидкости, перпендикулярно к ее поверхности. Таким образом, все молекулы жидкости, находящиеся в поверхностном слое, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость (молекулярное давление ).

Чтобы переместить молекулу , расположенную непосредственно под поверхностным слоем, на поверхность, необходимо совершить работу против сил молекулярного давления. Следовательно, молекулы поверхностного слоя жидкости обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эту энергию называют поверхностной энергией .

Очевидно, что величина поверхностной энергии тем больше, чем больше площадь свободной поверхности.

Пусть площадь свободной поверхности изменилась на , при этом поверхностная энергия изменилась на , где a - коэффициент поверхностного натяжения.

Так как для этого изменения необходимо совершить работу

Единицей коэффициента поверхностного натяжения в СИ является джоуль на квадратный метр .

Коэффициент поверхностного натяжения - величина, численно равная работе, совершенной молекулярными силами при изменении площади свободной поверхности жидкости на единицу при изотермическом процессе.

Так как любая система, предоставленная сама себе, стремится занять такое положение, в котором ее потенциальная энергия наименьшая, то жидкость обнаруживает стремление к сокращению свободной поверхности.

Поверхностный слой жидкости ведет себя подобно растянутой резиновой пленке, т.е. все время стремится сократить площадь своей поверхности до минимальных размеров, возможных при данном объеме.

Пример: капля жидкости в состоянии невесомости имеет сферическую форму.

Особенности жидкого состояния вещества

Свойства жидкостей

Как известно, вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором оно находится. Сохранение объема жидкости объясняется наличием сил притяжения между молекулами. Эти силы межмолекулярного взаимодействия удерживают молекулу жидкости около её временного положения равновесия примерно в течение с, после чего она перескакивает в новое временное положение равновесия приблизительно на расстоянии своего диаметра. Время между двумя перескоками молекулы из одного положения равновесия в другое называется временем оседлой жизни . Это время зависит от вида жидкости и температуры. При нагревании среднее время оседлой жизни уменьшается. Благодаря возможности довольно свободного перемещения молекул относительно друг друга жидкости обладают текучестью, поэтому они не имеют постоянной формы, а принимают форму сосуда.

Если выделить в жидкости очень малый объем, то в течение времени оседлой жизни в нем существует упорядоченное расположение молекул, как бы зародыш кристаллической решетки. Затем это расположение распадается, но возникает в другом месте. Поэтому принято говорить, что в жидкости существует ближний порядок в расположении молекул , но отсутствует дальний порядок.

Жидкости проявляют ряд механических свойств, сближающих их в большей мере с твердыми телами, чем с газами. К ним можно отнести упругость (при кратковременном воздействии), хрупкость (т.е. способность к разрыву), низкая сжимаемость. Еще одно существенное отличие от газов: в газах кинетическая энергия молекул значительно больше их потенциальной энергии, тогда как в жидкостях потенциальная и кинетическая энергии примерно равны.

На поверхности жидкости, вблизи границы, разделяющей жидкость и ее пар, взаимодействие между молекулами жидкости отличается от взаимодействия молекул внутри объема жидкости. Для иллюстрации этого утверждения рассмотрим рис. 20 . Молекула 1, окруженная со всех сторон другими молекулами той же жидкости испытывает в среднем одинаковые притяжения ко всем своим соседям. Равнодействующая этих сил близка к нулю. Молекула 2 испытывает меньшее притяжение вверх со стороны молекул пара и большее притяжение вниз со стороны молекул жидкости. В результате на молекулы, расположенные в поверхностном слое действует направленная вниз равнодействующая R сил, которую принято относить к единице площади поверхностного слоя.

Для перенесения молекул из глубины жидкости в ее поверхностный слой необходимо совершить работу по преодолению силы R . Эта работа идет на увеличение поверхностной энергии , т.е. избыточной потенциальной энергии, которой обладают молекулы в поверхностном слое по сравнению с их потенциальной энергией внутри остального объема жидкости.



Обозначим потенциальную энергию одной молекулы в поверхностном слое, - потенциальную энергию молекулы в объеме жидкости, число молекул в поверхностном слое жидкости. Тогда поверхностная энергия равна

Коэффициентом поверхностного натяжения (или просто поверхностным натяжением ) жидкости называют изменение поверхностной энергии при изотермическом увеличении площади поверхности на одну единицу:

где – число молекул на единице площади поверхности жидкости.

Если поверхность жидкости ограничена периметром смачивания, то коэффициент поверхностного натяжения численно равен силе, действующей на единицу длины периметра смачивания и направленной перпендикулярно к этому периметру:

где – длина периметра смачивания, сила поверхностного натяжения, действующая на длине периметра смачивания. Сила поверхностного натяжения лежит в плоскости, касательной к поверхности жидкости.

Сокращение площади поверхности жидкости уменьшает поверхностную энергию. Условием устойчивого равновесия жидкости, как и любого тела, является минимум потенциальной поверхностной энергии. Это значит, что в отсутствие внешних сил жидкость должна иметь при заданном объеме наименьшую площадь поверхности. Такой поверхностью является сферическая поверхность.

С повышением температуры жидкости и приближением ее к критической коэффициент поверхностного натяжения стремится к нулю. Вдали от коэффициент s линейно убывает при возрастании температуры. Для уменьшения поверхностного натяжения жидкости к ней добавляют специальные примеси (поверхностно-активные вещества), которые располагаются на поверхности и уменьшают поверхностную энергию. К ним относятся мыло и другие моющие средства, жирные кислоты и т.п.

Лекция 11.Характеристика жидкого состояния вещества. Поверхностный слой жидкости. Энергия поверхностного слоя. Явления на границе жидкости с твердым телом. Капиллярные явления.

ХАРАКТЕРИСТИКА ЖИДКОГО СОСТОЯНИЯ ВЕЩЕСТВА

Жидкость - это агрегатное состояние вещества, промежуточное между газообразным и твердым.

Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором оно находится Сохранение объема у жидкости доказывает, что между ее молекулами действуют силы притяжения.

Если вокруг молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с нашей молекулой. Эти силы взаимодействия удерживают молекулу жидкости около ее временного положения равновесия примерно в течение 10 -12 -10 -10 с, после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра. Молекулы жидкости между перескоками совершают колебательное движение около временного положения равновесия.

Время между двумя перескоками молекулы из одного положения в другое называется временем оседлой жизни.

Это время зависит от вида жидкости и от температуры. При нагревании жидкости среднее время оседлой жизни молекул уменьшается.

Итак, в небольшом объеме жидкости наблюдается упорядоченное расположение ее молекул, а в большом объеме оно оказывается хаотическим. В этом смысле говорят, что в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называют квазикристаллическим (кристаллоподобным).

СВОЙСТВА ЖИДКОСТИ

1.Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться; камень можно бросить так, что он при ударе о по­верхность воды отскакивает от нее, и лишь совершив несколько скачков, тонет в воде.

2. Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.

3. При кратковременном действии силы на струю жидкости последняя обнаруживает хрупкость. Прочность жидкости нд разрыв хотя и меньше, чем у твердых веществ, но мало уступает им по величине. Для воды она составляет 2,5-10 7 Н/м 2 .

4.Сжимаемость жидкости тоже очень мала, хотя она и больше, чем у этих же веществ в твердом состоянии. Например, при увеличении давления на 1 атм объем воды уменьшается на 50 миллионных долей.

Разрывы внутри жидкости, в которой нет посторонних веществ, например воздуха, могут получаться только при интенсивном воздействии на жидкость, например при вращении гребных винтов в воде, при распространении в жидкости ультразвуковых волн. Такого рода пустоты внутри жидкости долго существовать не могут и резко захлопываются, т. е. исчезают. Это явление называют кавитацией (от греческого «кавитас» – полость). Оно служит причиной быстрого износа гребных винтов.


ПОВЕРХНОСТНЫЙ СЛОЙ ЖИДКОСТИ

Среднее значение равнодействующей молекулярных сил притя­жения, приложенных к молекуле, которая находится внутри жидкости (рис. 2), близко к нулю. Случайные флуктуации этой равнодействующей заставляют молекулу совершать лишь хаотическое движение внутри жидкости. Несколько иначе обстоит дело с молекулами, находящимися в поверхностном слое жидкости.

Опишем вокруг молекул сферы молекулярного действия радиусом R(порядка 10 -8 м). Тогда для верхней молекулы в нижней полусфере окажется много молекул, а в верхней – значительно меньше, так как снизу находится жидкость, а сверху – пар и воздух. Поэтому для верхней молекулы равнодействующая молекулярных сил притяжения в нижней полусфере много больше равнодействующей молекулярных сил в верхней полусфере.

Таким образом, все молекулы жидкости, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость, которое называют молекулярным давлением.

Силы, действующие в горизонтальной плоскости, стягивают поверхность жидкости. Они называются силами поверхностного натяжения

Поверхностное натяжение - физическая величина, равная отношению силы F поверхностного натяжения, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине l этой границы:


Единица поверхностного натяжения – ньютон на метр (Н/м).

Поверхностное натяжение различно для разных жидкостей и зависит от температуры.

Обычно поверхностное натяжение уменьшается с возрастанием температуры и при критической температуре, когда плотность жидкости и пара одинаковы, поверхностное натяжение жидкости равно нулю.

Вещества, которые уменьшают поверхностное натяжение, называют поврхностно – активными (спирт, мыло, стиральный порошок)

Чтобы увеличить площадь поверхности жидкости требуется выполнить работу против поверхностного натяжения.

Имеется другое определение коэффициента поверхностного натяжения - энергетическое. Оно исходит из того, что если площадь поверхности жидкости увеличивается, то некоторое количество молекул из ее объема поднимается на слой поверхности. С этой целью внешние силы совершают работу против молекулярных сил сцепления молекул. Величина данной работы будет пропорциональна изменению площади поверхности жидкости:

Коэффициент пропорциональности σ и называется поверхностным натяжением жидкости.

Выведем единицу поверхностного, натяжения а в СИ: о=1 Дж/1 м 2 = 1 Дж/м 2 .

Поскольку молекулы жидкости, находящиеся в ее поверхностном слое, втягиваются внутрь жидкости, их потенциальная энергия больше, чем у молекул внутри жидкости. К этому выводу можно также прийти, если вспомнить, что потенциальная энергия взаимодействия молекул отрицательна (§ 2.4), и учесть, что молекулы в поверхностном слое жидкости на рис. 10.1) взаимодействуют с меньшим числом молекул, чем молекулы внутри жидкости

Эту дополнительную потенциальную энергию молекул поверхностного слоя жидкости называют свободной энергией; за счет нее может быть произведена работа, связанная с уменьшением свободной поверхности жидкости. Наоборот, для того чтобы вывести молекулы, находящиеся внутри жидкости, на ее поверхность, нужно преодолеть противодействие молекулярных сил, т. е. произвести работу, которая нужна для увеличения свободной энергии поверхностного слоя жидкости. Нетрудно сообразить, что при этом изменение свободной энергии прямо пропорционально изменению площади свободной поверхности жидкости

Так как то имеем

Итак, работа молекулярных сил А при уменьшении площади свободной поверхности жидкости прямо. пропорциональна Но эта работа должна еще зависеть от рода жидкости и внешних условий, например от температуры. Эту зависимость и выражает коэффициент .

Величина а, характеризующая зависимость работы молекулярных сил при изменении площади свободной поверхности жидкости от рода жидкости и внешних условий, называется коэффициентом поверхностного натяжения жидкости (или просто поверхностным натяжением), а измеряется работой молекулярных сил при уменьшении площади свободной поверхности жидкости на единицу:

Выведем единицу поверхностного, натяжения в СИ:

В СИ за единицу а принимается такое поверхностное натяжение, при котором молекулярные силы совершают работу в 1 Дж, уменьшая площадь свободной поверхности жидкости на .

Так как всякая система самопроизвольно переходит в состояние, при котором ее потенциальная энергия минимальна, то жидкость должна самопроизвольно переходить в такое состояние, при котором площадь ее свободной поверхности имеет наименьшую величину. Это можно показать с помощью следующего опыта.

На проволоке, изогнутой в виде буквы П, укрепляют подвижную поперечину I (рис. 10.2). Полученную таким образом рамку затягивают мыльной пленкой, опуская рамку в мыльный раствор. После вынимания рамки из раствора поперечина I перемещается вверх, т. е. молекулярные силы действительно уменьшают площадь свободной поверхности жидкости. (Подумайте, куда девается при этом освободившаяся энергия.)

Поскольку при одном и том же объеме наименьшая площадь поверхности имеется у шара, жидкость в состоянии невесомости принимает форму шара. По этой же причине маленькие капли жидкости имеют шарообразную форму. Форма мыльных пленок на различных каркасах всегда соответствует наименьшей площади свободной поверхности жидкости.

На поверхности жидкости, вблизи границы, разделяющей жидкость и ее пар, взаимодействие между молекулами жидкости отличается от взаимодействия молекул внутри объема жидкости. Для иллюстрации этого утверждения рассмотрим рис. 20 .

Рис. 20. Взаимодействие между молекулами внутри и на поверхности жидкости

Молекула 1, окруженная со всех сторон другими молекулами той же жидкости испытывает в среднем одинаковые притяжения ко всем своим соседям. Равнодействующая этих сил близка к нулю. Молекула 2 испытывает меньшее притяжение вверх со стороны молекул пара и большее притяжение вниз со стороны молекул жидкости. В результате на молекулы, расположенные в поверхностном слое действует направленная вниз равнодействующая R сил, которую принято относить к единице площади поверхностного слоя.

Для перенесения молекул из глубины жидкости в ее поверхностный слой необходимо совершить работу по преодолению силы R . Эта работа идет на увеличение поверхностной энергии, т.е. избыточной потенциальной энергии, которой обладают молекулы в поверхностном слое по сравнению с их потенциальной энергией внутри остального объема жидкости.

Обозначим W s потенциальную энергию одной молекулы в поверхностном слое, W v - потенциальную энергию молекулы в объеме жидкости, N – число молекул в поверхностном слое жидкости. Тогда поверхностная энергия равна:

W пов =(W s -W v)·N (75)

Коэффициентом поверхностного натяжения (или просто поверхностным натяжением) жидкости называют изменение поверхностной энергии при изотермическом увеличении площади поверхности на одну единицу:

σ=ΔW пов /ΔS=(N/S)·(W s -W v)=n·(W s -W v) (76)

Где n – число молекул на единице площади поверхности жидкости.

Если поверхность жидкости ограничена периметром смачивания, то коэффициент поверхностного натяжения численно равен силе, действующей на единицу длины периметра смачивания и направленной перпендикулярно к этому периметру:

Где l – длина периметра смачивания, F – сила поверхностного натяжения, действующая на длине l периметра смачивания. Сила поверхностного натяжения лежит в плоскости, касательной к поверхности жидкости.

Сокращение площади поверхности жидкости уменьшает поверхностную энергию. Условием устойчивого равновесия жидкости, как и любого тела, является минимум потенциальной поверхностной энергии. Это значит, что в отсутствие внешних сил жидкость должна иметь при заданном объеме наименьшую площадь поверхности. Такой поверхностью является сферическая поверхность.

С повышением температуры жидкости и приближением ее к критической коэффициент поверхностного натяжения стремится к нулю. Вдали от T кр коэффициент σ линейно убывает при возрастании температуры. Для уменьшения поверхностного натяжения жидкости к ней добавляют специальные примеси (поверхностно-активные вещества), которые располагаются на поверхности и уменьшают поверхностную энергию. К ним относятся мыло и другие моющие средства, жирные кислоты и т.п.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама