THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Нобелевская премия была в первый раз вручена в 1901 году. С начала века комиссия ежегодно выбирает лучшего специалиста, сделавшего важное открытие или создавшего изобретение, чтобы удостоить его почетной награды. Список лауреатов Нобелевской премии несколько превышает количество лет проведения церемонии вручения, так как иногда были отмечены одновременно два или три человека. Тем не менее, некоторых стоит отметить отдельно.

Игорь Тамм

Русский физик, родился в городе Владивостоке в семье инженера-строителя. В 1901 году семья переехала на Украину, именно там Игорь Евгеньевич Тамм окончил гимназию, после чего ездил учиться в Эдинбург. В 1918-м он получил диплом физфака МГУ.

После этого он стал преподавать, сначала в Симферополе, затем в Одессе, а потом и в Москве. В 1934 году получил пост заведующего сектором теоретической физики в институте имени Лебедева, где проработал до конца жизни. Игорь Евгеньевич Тамм изучал электродинамику твердых тел, а также оптические свойства кристаллов. В своих работах он впервые высказал идею о квантах звуковых волн. Релятивистская механика в те времена была крайне актуальна, и Тамму удалось экспериментальным образом подтвердить идеи, которые не были доказаны прежде. Его открытия оказались весьма значимыми. В 1958 году работы были признаны на мировом уровне: вместе с коллегами Черенковым и Франком он получил Нобелевскую премию.

Стоит отметить еще одного теоретика, проявившего незаурядные способности и к экспериментам. Немецко-американский физик, лауреат Нобелевской премии Отто Штерн появился на свет в феврале 1888 года в Сорау (теперь это польский город Зори). Школу Штерн окончил в Бреслау, а затем несколько лет занимался естественными науками в немецких университетах. В 1912 году он защитил докторскую диссертацию, руководителем его аспирантской работы стал Эйнштейн.

Во время Первой мировой Отто Штерн был мобилизован в армию, но и там продолжил теоретические исследования в сфере квантовой теории. С 1914 по 1921 год он работал во Франкфуртском университете, где занимался экспериментальным подтверждением молекулярного движения. Именно тогда ему удалось разработать метод атомных пучков, так называемый опыт Штерна. В 1923-м он получил должность профессора Гамбургского университета. В 1933-м выступил против антисемитизма и вынужден был переехать из Германии в США, где получил гражданство. В 1943 году пополнил список лауреатов Нобелевской премии за серьезный вклад в развитие молекулярно-лучевого метода и открытие магнитного момента протона. С 1945 года - член Национальной академии наук. С 1946 года проживал в Беркли, где и закончил свои дни в 1969 году.

О. Чемберлен

Американский физик Оуэн Чемберлен появился на свет 10 июля 1920 года в Сан-Франциско. Совместно с Эмилио Сегре он трудился в сфере Коллегам удалось добиться значительных успехов и совершить открытие: они обнаружили антипротоны. В 1959 году они были замечены на международном уровне и награждены как лауреаты Нобелевской премии по физике. С 1960-го Чемберлен был принят в Национальную академию наук Соединенных Штатов Америки. Трудился в Гарварде в качестве профессора, закончил свои дни в Беркли в феврале 2006 года.

Нильс Бор

Немногие лауреаты Нобелевской премии по физике так известны, как этот датский ученый. В каком-то смысле его можно назвать создателем современной науки. Кроме того, Нильс Бор основал институт теоретической физики в Копенгагене. Ему принадлежит теория атома, основанная на планетарной модели, а также постулаты. Им были созданы важнейшие работы о теории атомного ядра и ядерных реакций, по философии естествознания. Несмотря на интерес к строению частиц, выступал против использования их в военных целях. Образование будущий физик получал в грамматической школе, где прославился как заядлый футболист. Репутацию одаренного исследователя получил в двадцать три года, окончив Копенгагенский университет. Его был отмечен золотой медалью. Нильс Бор предложил определять поверхностное натяжение воды по вибрациям струи. С 1908 по 1911 год трудился в родном университете. Затем переехал в Англию, где работал с Джозефом Джоном Томсоном, а затем и с Эрнестом Резерфордом. Здесь провел свои важнейшие опыты, которые и привели его к получению награды в 1922-м. После этого вернулся в Копенгаген, где прожил до самой своей смерти в 1962 году.

Лев Ландау

Советский физик, лауреат Нобелевской премии, родился в 1908 году. Ландау создал потрясающие работы во многих сферах: он изучал магнетизм, сверхпроводимость, атомные ядра, элементарные частицы, электродинамику и многое другое. Совместно с Евгением Лифшицем создал классический курс теоретической физики. Его биография интересна необычайно быстрым развитием: уже в тринадцать лет Ландау поступил в университет. Какое-то время он обучался химии, но впоследствии решил заниматься физикой. С 1927 года являлся аспирантом Ленинградского института имени Иоффе. Современники запомнили его как увлеченного, резкого человека, склонного к критичным оценкам. Строжайшая самодисциплина позволили Ландау добиться успеха. Он работал над формулами так много, что видел их даже ночью во сне. Сильно повлияли на него и научные поездки за границу. Особенно важным стало посещение Института теоретической физики Нильса Бора, когда ученый смог обсудить интересующие его проблемы на высочайшем уровне. Ландау считал себя учеником известного датчанина.

В конце тридцатых годов ученому пришлось столкнуться со сталинскими репрессиями. Физику довелось бежать из Харькова, где он жил с семьей. Это не помогло, и в 1938 году его арестовали. Ведущие ученые мира обратились к Сталину, и в 1939 году Ландау был освобожден. После этого долгие годы он занимался научной работой. В 1962-м был зачислен в лауреаты Нобелевской премии по физике. Комитет выбрал его за новаторский подход к изучению конденсированных сред, особенно жидкого гелия. В том же году пострадал в трагической аварии, столкнувшись с грузовиком. После этого он прожил шесть лет. Российские физики, лауреаты Нобелевской премии редко достигали такого признания, какое было у Льва Ландау. Несмотря на тяжелую судьбу, он воплотил все свои мечты и сформулировал совершенно новый подход к науке.

Макс Борн

Немецкий физик, лауреат Нобелевской премии, теоретик и создатель квантовой механики родился в 1882 году. Будущий автор важнейших работ по теории относительности, электродинамике, философским вопросам, кинетике жидкости и многим другим трудился в Британии и на родине. Первое обучение получил в гимназии с языковым уклоном. После школы поступил в Бреславский университет. В процессе учебы посещал лекции известнейших математиков того времени - Феликса Клейна, и Германа Минковского. В 1912 году получил в Геттингене место приват-доцента, а в 1914-м отправился в Берлин. С 1919 года трудился во Франкфурте в качестве профессора. В числе его коллег был и Отто Штерн, будущий лауреат Нобелевской премии, о котором мы уже рассказали. В своих работах Борн описывал твердые тела и квантовую теорию. Пришел к необходимости особенного истолкования корпускулярно-волновой природы материи. Он доказал, что законы физики микромира можно назвать статистическими и что волновую функцию необходимо толковать как комплексную величину. После прихода к власти фашистов переехал в Кембридж. Вернулся в Германию только в 1953 году, а премию Нобеля получил в 1954-м. Навсегда остался в как один из самых влиятельных теоретиков двадцатого века.

Энрико Ферми

Не многие лауреаты Нобелевской премии по физике были родом из Италии. Однако именно там появился на свет Энрико Ферми, важнейший специалист двадцатого века. Он стал создателем ядерной и нейтронной физики, основал несколько научных школ и являлся членом-корреспондентом Академии наук Советского Союза. Кроме того, Ферми принадлежит большое количество теоретических работ в сфере элементарных частиц. В 1938-м он переехал в США, где открыл искусственную радиоактивность и построил первый в истории человечества ядерный реактор. В том же году получил Нобелевскую премию. Интересно, что Ферми отличала благодаря которой он не только оказался невероятно способным физиком, но и быстро изучал иностранные языки при помощи самостоятельных занятий, к которым подходил дисциплинированно, согласно собственной системе. Такие способности выделили его еще в университете.

Сразу же после обучения он начал читать лекции по квантовой теории, которую на тот момент в Италии практически не изучали. Его первые исследования в области электродинамики тоже заслужили всеобщее внимание. На пути Ферми к успеху стоит отметить профессора Марио Корбино, который оценил таланты ученого и стал его покровителем в Римском университете, обеспечив юноше прекрасную карьеру. После переезда в Америку работал в Лас-Аламосе и в Чикаго, где и умер в 1954-м.

Эрвин Шредингер

Австрийский физик-теоретик родился в 1887 году в Вене, в семье фабриканта. Состоятельный отец был вице-президентом местного ботанико-зоологического общества и с ранних лет привил сыну интерес к науке. До одиннадцати лет Эрвин обучался дома, а в 1898 году он поступил в академическую гимназию. Блестяще окончив ее, поступил в Венский университет. Несмотря на то что выбрана была физическая специальность, Шредингер проявил и гуманитарные таланты: он знал шесть иностранных языков, писал стихи и разбирался в литературе. Достижения в точных науках были вдохновлены Фрицем Газенролем, талантливым учителем Эрвина. Именно он помог студенту понять, что физика является его главным интересом. Для докторской диссертации Шредингер выбрал экспериментальную работу, которую ему удалось блестяще защитить. Началась работа в университете, в процессе которой ученый занимался атмосферным электричеством, оптикой, акустикой, теорией цветов и квантовой физикой. Уже в 1914 году его утвердили доцентом, что позволило ему читать лекции. После войны, в 1918-м, начал работать в Йенском физическом институте, где трудился с Максом Планком и Эйнштейном. В 1921 году начал преподавать в Штутгарте, но после одного семестра переехал в Бреслау. Через какое-то время получил приглашение от политехникума в Цюрихе. В период с 1925 по 1926 год выполнил несколько революционных экспериментов, опубликовав работу под названием «Квантование как задача о собственных значениях». Создал важнейшее уравнение, актуальное и для современной науки. В 1933 году получил Нобелевскую премию, после чего вынужден был покинуть страну: к власти пришли нацисты. После войны вернулся в Австрию, где прожил все оставшиеся годы и умер в 1961-м в родной Вене.

Вильгельм Конрад Рентген

Известный немецкий физик-экспериментатор родился в Леннепе, что под Дюссельдорфом, в 1845 году. Получив образование в Цюрихском политехникуме, планировал стать инженером, но понял, что заинтересован в теоретической физике. Стал ассистентом кафедры в родном университете, потом переехал в Гиссен. С 1871 по 1873 год работал в Вюрцбурге. В 1895 году открыл рентгеновские лучи и тщательно изучил их свойства. Был автором важнейших трудов по пиро- и пьезоэлектрическим свойствам кристаллов и по магнетизму. Стал первым в мире лауреатом Нобелевской премии по физике, получив ее в 1901 году за выдающийся вклад в науку. Кроме того, именно Рентген работал в школе Кундта, став своего рода основателем целого научного течения, сотрудничая с современниками - Гельмгольцем, Кирхгофомом, Лоренцом. Несмотря на славу успешного экспериментатора, вел достаточно замкнутый образ жизни и общался исключительно с ассистентами. Поэтому воздействие его идей на тех физиков, что не были его учениками, оказалось не слишком значимым. Скромный ученый отказывался от названия лучей в свою честь, всю жизнь называя их X-лучами. Свои доходы он отдал государству и жил в весьма стесненных обстоятельствах. Скончался 10 февраля 1923 года в Мюнхене.

Всемирно известный физик родился в Германии. Он стал создателем теории относительности и написал важнейшие труды по квантовой теории, являлся иностранным членом-корреспондентом Российской академии наук. С 1893 года жил в Швейцарии, а в 1933-м переехал в Соединенные Штаты. Именно Эйнштейн ввел понятие фотона, установил законы фотоэффекта и предсказал открытие индуцированного излучения. Он развил теорию и флуктуаций, а также создал квантовую статистику. Трудился над проблемами космологии. В 1921 году получил Нобелевскую премию за открытие законов фотоэффекта. Кроме того, Альберт Эйнштейн входит в число основных инициаторов основания государства Израиль. В тридцатые годы выступал против фашистской Германии и старался удержать политиков от безумных действий. Его мнение насчет атомной проблемы не было услышано, что стало главной трагедией жизни ученого. В 1955 году он умер в Принстоне от аневризмы аорты.

История. Альфред Нобель родился в 1833 г. в Стокгольме. Он был химиком, инженером, изобретателем. Большую часть дохода он получил от своих 355 изобретений, среди которых самое известное – динамит. Задумавшись над тем, как его будет помнить человечество, Нобель в ноябре 1895 г. составил завещание: «Всё моё движимое и недвижимое имущество должно быть обращено в ликвидные ценности, а собранный капитал помещён в надёжный банк. Доходы от вложений должны принадлежать фонду, который будет ежегодно распределять их в виде премий тем, кто в течение предыдущего года принёс наибольшую пользу человечеству… Моё особое желание заключается в том, что бы при присуждении премий не принималась во внимание национальность кандидатов.»


В завещании Нобеля предусматривалось выделение средств на награды представителям только пяти направлений: Физика Химия Литература Физиология и медицина Премия мира ЭКОНОМИКЕ. По инициативе шведского банка с 1969 года присуждается премия его имени по ЭКОНОМИКЕ. Кто получает Нобелевскую премию?




Процедура награждения происходит ежегодно 10 декабря в столицах двух стран – в Стокгольме (Швеция) и в Осло (Норвегия). Стокгольм – концертный залОсло – городская ратуша Вручаются премии в области физики, химии, физиологии и медицины, литературы, экономики. Вручаются премии в области защиты мира Процедура вручения Нобелевской премии






Первый лауреат Нобелевской премии по физике Вильгельм Конрад Рентген – великий немецкий физик. Родился 27 марта 1845 г. Его научные исследования относятся к электромагнетизму, физике кристаллов, оптике, молекулярной физике. В 1895 г. Рентген открыл излучение более коротковолновое, чем ультрафиолетовое излучение. В дальнейшем это излучение было названо его именем – рентгеновское. Он исследовал удивительные свойства этих лучей проникать вглубь вещества. С помощью этих лучей можно «увидеть» кости и внутренние органы. Сейчас мы не представляем себе медицину без рентгеновского исследования. За открытие этих лучей Рентгену в 1901 году первому среди физиков была присуждена Нобелевская премия.


Женщины – лауреаты Нобелевской премии по физике Мария Складовская-Кюри родилась в Варшаве в 1867 г. Дважды лауреат Нобелевской премии: по физике (1903 г.) и по химии (1911 г.) Премию по физике она получила вместе с мужем Пьером Кюри и Анри Беккерелем за исследования в области радиации, а по химии за открытие ряда новых радиоактивных химических элементов. Мария Гёпперт-Майер родилась в 1906 г. в Германии. Награждена Нобелевской премией совместно с Хансом Йенсеном в 1963 г. за открытие оболочечной структуры ядра атома.


Джон Бардин родился в 1908 г. в США. В 1956 г. совместно с Уильямом Брэдфордом получил Нобелевскую премию за изобретение биполярного транзистора. В 1972 г. совместно с Леоном Нилом Купером и Джоном Робертом Шриффером получил Нобелевскую премию за теорию обычных сверхпроводников. Сейчас эта теория называется теорией Бардина-Купера-Шриффера или просто БКШ – теория. Сверхпроводник – это материал, у которого при определённых условиях (при очень низкой температуре) полностью исчезает сопротивление. В таком проводнике электрический ток может существовать без источника тока. Дважды лауреат Нобелевской премии по физике.


Электричество и магнетизм Хендрик Антон Лоренц – нидерландский физик, лауреат Нобелевской премии 1902 г. За исследование расщепления линий в спектре атома в магнитном поле. Гейке Камерлинг-Оннес – нидерландский физик, лауреат Нобелевской премии 1913 г. За открытие явления сверхпроводимости Нобелевские лауреаты из школьного учебника физики.


Квантовая физика Макс Людвиг Планк – немецкий физик, лауреат Нобелевской премии 1918 г. За открытие квантовой природы теплового излучения Е = hν Альберт Эйнштейн – немецкий физик, лауреат Нобелевской премии 1921 г. За объяснение явления фотоэффекта. Нильс Бор – датский физик, лауреат Нобелевской премии 1922 г. За объяснение излучения и поглощения энергии атомами. Нобелевские лауреаты из школьного учебника физики.


Ядерная физика Чарльз Томсон Вильсон – английский физик, лауреат Нобелевской премии 1927 г. За метод визуального обнаружения траекторий заряженных частиц в специальной камере. Джеймс Чедвик – английский физик, лауреат Нобелевской премии 1935 г. За открытие нейтрона.


Жорж Шарпак – французский физик. Родился в 1924 г. в волынском местечке Дубровица (сейчас это Ровенская область). В 1931 г. семья переехала в Париж. Награждён Нобелевской премией в 1992 году за создание детекторов частиц. Это устройство для обнаружения и измерения параметров элементарных частиц, которые рождаются в ускорителях или при ядерных реакциях. Лев Давидович Ландау – советский физик-теоретик. В 1932 г. Ландау возглавил теоретический отдел Украинского физико-технического института в Харькове. Здесь же ему была присвоена степень доктора физико- математических наук без защиты диссертации. Награждён Нобелевской премией в 1962 г. За работу в области теории конденсированных сред, в особенности жидкого гелия, в котором многие металлы становятся сверхпроводниками. Нобелевские лауреаты по физике, которые родились или работали в Украине.



С формулировкой «за теоретические открытия топологических фазовых переходов и топологических фаз материи ». За этой несколько размытой и малопонятной широкой публике фразой стоит целый мир нетривиальных и удивительных даже для самих физиков эффектов, в теоретическом открытии которых лауреаты сыграли ключевую роль в 1970–1980-е годы. Они, конечно, были не единственными, кто осознал тогда важность топологии в физике. Так, советский физик Вадим Березинский за год до Костерлица и Таулесса сделал, по сути, первый важный шаг к топологическим фазовым переходам. Рядом с именем Холдейна тоже можно поставить много других имен. Но как бы то ни было, все три лауреата безусловно являются знаковыми фигурами в этом разделе физики.

Лирическое введение в физику конденсированных сред

Объяснить доступными словами суть и важность работ, за которые был присужден физический Нобель-2016, - задача не из простых. Мало того, что сами явления сложные и вдобавок квантовые, так они еще и разнообразные. Премия была присуждена не за одно конкретное открытие, а за целый список пионерских работ, которые в 1970–1980-е годы стимулировали развитие нового направления в физике конденсированных сред. В этой новости я попробую достичь более скромной цели: объяснить на паре примеров суть того, что такое топологический фазовый переход, и передать ощущение, что это действительно красивый и важный физический эффект. Рассказ будет лишь про одну половину премии, ту, в которой проявили себя Костерлиц и Таулесс. Работы Холдейна столь же завораживающие, но они еще менее наглядные, и для их объяснения потребовался бы совсем уж длинный рассказ.

Начнем с блиц-введения в самый богатый на явления раздел физики - физику конденсированных сред.

Конденсированная среда - это, на житейском языке, когда много однотипных частиц собрались вместе и сильно воздействуют друг на друга. Почти каждое слово здесь - ключевое. Сами частицы и закон взаимодействия между ними - должны быть однотипными. Можно взять несколько разных атомов, пожалуйста, но главное, что дальше этот фиксированный набор повторяется снова и снова. Частиц должно быть очень много; десяток-другой - это еще не конденсированная среда. И, наконец, влиять они друг на друга должны сильно: толкать, тянуть, мешать друг другу, может быть обмениваться друг с другом чем-то. Разреженный газ конденсированной средой не считается.

Главное откровение физики конденсированных сред: при таких очень простых «правилах игры» в ней обнаружилось нескончаемое богатство явлений и эффектов. Такое многообразие явлений возникает вовсе не из-за пестрого состава - частицы-то однотипные, - а самопроизвольно, динамически, как результат коллективных эффектов . В самом деле, раз взаимодействие сильное, нет смысла смотреть на движение каждого отдельного атома или электрона, ведь оно тут же сказывается на поведении всех ближайших соседей, а может быть, даже и далеких частиц. Когда вы читаете книгу, она «говорит» с вами не россыпью отдельных букв, а набором связанных друг с другом слов, она передает вам мысль в форме «коллективного эффекта» букв. Так же и конденсированная среда «говорит» на языке синхронных коллективных движений, а вовсе не отдельных частиц. И вот этих коллективных движений, оказывается, огромное разнообразие.

Нынешняя Нобелевская премия отмечает работы теоретиков по расшифровке еще одного «языка», на котором могут «разговаривать» конденсированные среды, - языка топологически нетривиальных возбуждений (что это такое - чуть ниже). Конкретных физических систем, в которых возникают такие возбуждения, найдено уже немало, и ко многим из них приложили руку лауреаты. Но самое существенное здесь - не конкретные примеры, а сам факт того, что такое в природе тоже бывает.

Многие топологические явления в конденсированных средах были вначале выдуманы теоретиками и казались просто математической шалостью, не относящейся к нашему миру. Но потом экспериментаторы обнаруживали реальные среды, в которых эти явления наблюдаются, - и математическая шалость вдруг порождала новый класс материалов с экзотическими свойствами. Экспериментальная сторона этого раздела физики сейчас на подъеме, и это бурное развитие будет продолжаться и в будущем, обещая нам новые материалы с запрограммированными свойствами и устройства на их основе.

Топологические возбуждения

Сначала поясним слово «топологический». Не пугайтесь, что объяснение будет звучать как голая математика; связь с физикой проявится по ходу дела.

Есть такой раздел математики - геометрия, наука о фигурах. Если форму фигуры плавно деформировать, то, с точки зрения обычной геометрии, сама фигура меняется. Но у фигур бывают общие характеристики, которые при плавной деформации, без разрывов и склеек, остаются неизменными. Это и есть топологическая характеристика фигуры. Самый известный пример топологической характеристики - это количество дырок у трехмерного тела. Чайная кружка и бублик - топологически эквивалентны, они оба имеют ровно одну дырку, и потому плавной деформацией одну фигуру можно превратить в другую. Кружка и стакан - топологически различаются, потому что у стакана дырок нет. Для закрепления материала предлагаю ознакомиться с прекрасной топологической классификацией женских купальников .

Итак, вывод: всё то, что можно свести друг к другу плавной деформацией, считается топологически эквивалентным. Две фигуры, которые никакими плавными изменениями друг в друга не превратишь, считаются топологически разными.

Второе слово для объяснение - «возбуждение». В физике конденсированных сред возбуждение - это любое коллективное отклонение от «мертвого» неподвижного состояния, то есть от состояния с наименьшей энергией. Например, по кристаллу ударили, по нему побежала звуковая волна - это колебательное возбуждение кристаллической решетки. Возбуждения не обязательно вызывать насильно, они могут спонтанно возникать из-за ненулевой температуры. Обычное тепловое дрожание кристаллической решетки - это, по сути, много наложившихся друг на друга колебательных возбуждений (фононов) с разными длинами волн. Когда концентрация фононов велика, происходит фазовый переход, кристалл плавится. В общем, как только мы поймем, в терминах каких возбуждений следует описывать данную конденсированную среду, мы получим ключ к ее термодинамическим и прочим свойствам.

Теперь соединим два слова. Звуковая волна - это пример топологически тривиального возбуждения. Это звучит умно, но по своей физической сути это просто означает, что звук можно сделать сколь угодно тихим, вплоть до полного исчезновения. Громкий звук - колебания атомов сильные, тихий звук - слабые. Амплитуду колебаний можно плавно уменьшать до нуля (точнее, до квантового предела, но это тут несущественно), и это всё еще будет звуковое возбуждение, фонон. Обратите внимание на ключевой математический факт: существует операция плавного изменения колебаний до нуля - это просто уменьшение амплитуды. Именно это и означает, что фонон - топологически тривиальное возмущение.

А сейчас включается богатство конденсированных сред. В некоторых системах бывают возбуждения, которые нельзя плавно уменьшить до нуля . Не физически нельзя, а принципиально - форма не позволяет. Просто не существует такой повсюду плавной операции, которая переводит систему с возбуждением в систему с наименьшей энергией. Возбуждение по своей форме топологически отличается от тех же фононов.

Смотрите, как это получается. Рассмотрим простую систему (она называется XY-модель) - обычную квадратную решетку, в узлах которой есть частицы со своим спином, который может быть ориентирован как угодно в этой плоскости. Мы будем изображать спины стрелочками; ориентация стрелочки произвольная, но длина фиксирована. Мы будем также считать, что спины соседних частиц взаимодействуют друг с другом таким образом, что наиболее энергетически выгодная конфигурация - это когда все спины во всех узлах смотрят в одну сторону, как в ферромагнетике. Эта конфигурация показа на рис. 2, слева. По ней могут бежать спиновые волны - небольшие волнообразные отклонения спинов от строгой упорядоченности (рис. 2, справа). Но это всё обычные, топологически тривиальные возбуждения.

А вот теперь взгляните на рис. 3. Здесь показаны два возмущения необычной формы: вихрь и антивихрь. Выберите мысленно точку на картинке и пройдите взглядом по круговому пути против часовой стрелки вокруг центра, обращая внимание на то, что происходит со стрелочками. Вы увидите, что у вихря стрелочка поворачивается в ту же сторону, против часовой стрелки, а у антивихря - в противоположную, по часовой стрелке. Проделайте теперь тоже в основном состоянии системы (стрелочка вообще неподвижна) и в состоянии со спиновой волной (там стрелочка слегка колышется около среднего значения). Вы можете также представить себе и деформированные варианты этих картинок, скажем спиновая волна в нагрузку к вихрю: там стрелочка тоже будет делать полный оборот, слегка вихляя.

После этих упражнений становится ясно, что все возможные возбуждения разбиваются на принципиально различающиеся классы : делает ли стрелочка полный оборот при обходе вокруг центра или нет, и если делает, то в какую сторону. Эти ситуации имеют разную топологию. Никакие плавные изменения не могут превратить вихрь в обычную волну: если уж поворачивать стрелочки, то скачком, сразу на всей решетке и сразу на большой угол. Вихрь, равно как и антивихрь, топологически защищены : они, в отличие от звуковой волны, не могут просто так рассосаться.

Последний важный момент. Вихрь топологически отличается от простой волны и от антивихря только в том случае, если стрелочки лежат строго в плоскости рисунка. Если же нам разрешается выводить их в третье измерение, то тогда вихрь можно плавно устранить. Топологическая классификация возбуждений кардинально зависит от размерности системы!

Топологические фазовые переходы

Эти чисто геометрические рассуждения имеют вполне осязаемое физическое следствие. Энергия обычного колебания, того же фонона, может быть сколь угодно малой. Поэтому при любой сколь угодно низкой температуре эти колебания спонтанно возникают и влияют на термодинамические свойства среды. Энергия же топологически защищенного возбуждения, вихря, не может быть ниже некоторого предела. Поэтому при низких температурах отдельные вихри не возникают, а значит, не влияют на термодинамические свойства системы - по крайней мере, так считалось до начала 1970-х годов.

Между тем, в 1960-е годы усилиями многих теоретиков вскрылась проблема с пониманием того, что происходит в XY-модели с физической точки зрения. В обычном трехмерном случае всё просто и интуитивно понятно. При низких температурах система выглядит упорядоченно, как на рис. 2. Если взять два произвольных узла решетки, пусть даже и очень далеких, то спины в них будут слегка колебаться около одинакового направления. Это, условно говоря, спиновый кристалл. При высоких температурах происходит «плавление» спинов: два далеких узла решетки уже никак друг с другом не скоррелированы. Есть четкая температура фазового перехода между двумя состояниями. Если установить температуру ровно на это значение, то система будет находиться в особом критическом состоянии, когда корреляции еще есть, но плавно, степенным образом уменьшаются с расстоянием.

В двумерной решетке при высоких температурах тоже есть неупорядоченное состояние. А вот при низких температурах всё выглядело очень и очень странно. Была доказана строгая теорема (см. Теорема Мермина - Вагнера) о том, что в двухмерном варианте кристаллической упорядоченности нет. Аккуратные расчеты показали, что ее не то чтобы совсем нет, она просто уменьшается с расстоянием по степенному закону - ровно как в критическом состоянии. Но если в трехмерном случае критическое состояние было только при одной температуре, то тут критическое состояние занимает всю низкотемпературную область. Получается, в двумерном случае в игру вступают какие-то другие возбуждения, которых не существует в трехмерном варианте (рис. 4)!

Сопроводительные материалы Нобелевского комитета рассказывают о нескольких примерах топологических явлений в различных квантовых системах, а также о недавних экспериментальных работах по их реализации и о перспективах на будущее. Заканчивается этот рассказ цитатой из статьи Холдейна 1988 года. В ней он, словно оправдываясь, говорит: «Хотя представленная здесь конкретная модель вряд ли физически реализуема, тем не менее ...». 25 лет спустя журнал Nature публикует , в которой сообщается об экспериментальной реализации модели Холдейна. Пожалуй, топологически нетривиальные явления в конденсированных средах - это одно из самых ярких подтверждений негласного девиза физики конденсированных сред: в подходящей системе мы воплотим любую самосогласованную теоретическую идею, какой бы экзотической она ни казалась.

Химик, инженер и изобретатель Альфред Нобель заработал свое состояние в первую очередь благодаря изобретению динамита и других взрывчатых веществ. В свое время Нобель стал одним из самых богатых планеты.

Всего Нобелю принадлежало 355 изобретений.

При этом славу, которой пользовался ученый, нельзя назвать доброй. В 1888 году умер его брат Людвиг. Однако по ошибке журналисты написали в газетах о самого Альфреда Нобеля. Таким образом однажды он прочел в прессе собственный некролог, озаглавленный «Торговец смертью мертв». Этот инцидент заставил изобретателя задуматься о том, какая память останется о нем в грядущих поколениях. И Альфред Нобель изменил свое завещание.

Новое завещание Альфреда Нобеля немало обидело родственников изобретателя, оставшихся в итоге ни с чем.

Новое завещание было оглашено миллионера, в 1897 году.

Согласно этой бумаге, все движимое и недвижимое имущество Нобеля должно было быть обращено в капитал, который, в свою очередь, следует поместить в надежный банк. Доходы от этого капитала должны ежегодно делиться на пять равных частей и вручаться в в виде ученым, сделавшим наиболее значительные открытия в области физики, химии, медицины; писателям, создавшим литературные произведения; а также тем, кто сделал самый значительный вклад «в сплочение наций, уничтожение рабства или снижение численности существующих армий и содействие проведению мирных конгрессов» (премия мира).

Первые лауреаты

Традиционно первой вручается премия в области медицины и физиологии. Так что самым первым нобелевским лауреатом в 1901 году стал бактериолог из Германии Эмиль Адольф фон Беринг, который занимался разработкой вакцины против дифтерии.

Следом получает премию лауреат по физике. Первым этой награды был удостоен Вильгельм Рентген – за открытие лучей, названных его именем.

Первым лауреатом Нобелевской премии в области химии стал Якоб Вант-Гофф, который исследовал законы термодинамики для различных растворов.

Первый писатель, который был удостоен этой высокой награды, стал Рене Сюлли-Прюдом.

Премия в области борьбы за мир вручается последней. В 1901 году она была разделена между Жаном Анри Дюнаном и Фредериком Пасси. Гуманист из Швейцарии Дюнан - основатель Международного комитета Красного Креста (МККК). Француз Фредерик Пасси – лидер движения за мир в Европе.

Правообладатель иллюстрации Getty Images Image caption На всех Нобелевских медалях на аверсе отчеканено изображение Альфреда Нобеля

"… и одна часть пойдет тому, кто сделал самое важное открытие или изобретение в области физики…"

Из завещания Альфреда Нобеля.

Физика была первой областью науки, упомянутой в завещании Нобеля. В конце XIX века было широко распространено мнение, что именно физика является самой важной наукой, благодаря которой человечество сможет сделать колоссальный рывок вперед. Вполне возможно, что Альфред Нобель разделял эту точку зрения. Кроме того, с физикой были связаны и его собственные научные исследования.

В завещании Нобель указал, что премия по физике должна присуждаться Шведской королевской академией наук.

Нобелевская премия по физике в цифрах

премий по физике с 1901 по 2014 годы

    47 премий были присуждены только одному человеку

    2 женщины-лауреата

    25 лет было самому молодому лауреату

    55 лет - средний возраст лауреата на день присуждения премии

Нобелевский комитет

Она была основана в 1739 году. На сегодняшний день в ней состоят 440 шведских и 175 иностранных ученых. Академия назначает членов Нобелевского комитета сроком на три года.

В каких областях чаще всего присуждались Нобелевские премии по физике

Физика, возможно, претерпела самые кардинальные изменения за все время существования Нобелевских премий.

Правообладатель иллюстрации istock Image caption За время существования Нобелевской премии физика прошла путь от классической механики... Правообладатель иллюстрации istock Image caption ... до квантовой...

Член Нобелевского комитета по физике, шведский ученый Эрик Карлсон отметил, что эта наука прошла путь от классической механики XIX века до квантовой механики в XX, она занимается всем – от строения и природы элементарных частиц до изучения законов, управляющих космосом, в ее интересы входят такие свойства материи, как сверхтекучесть и сверхпроводимость, без нее невозможны современные технологии.

"Большинство основополагающих идей, заложенных в основу процесса постижения мира, были выдвинуты или изучены Нобелевскими лауреатами по физике", - сказал Карлсон.

Наибольшее число премий по физике было присуждено за исследования элементарных частиц (34), в ядерной физике (28), физике конденсированного состояния (28) и квантовой механике (11).

Правообладатель иллюстрации istock Image caption Премии вручались за исследования в ядерной физике... Правообладатель иллюстрации istock Image caption ... и за исследования космоса...

Самым известным Нобелевским лауреатом всех времен, дисциплин и народов стал Альберт Эйнштейн. В 1921 году он получил Нобелевскую премию по физике - как было сказано, "За заслуги в области теоретической физики, и в особенности за открытие фотоэлектрического эффекта".

Медаль по физике

Правообладатель иллюстрации Hulton Archive Image caption Альберт Эйнштейн в год присуждения Нобелевской премии (1921)

На всех Нобелевских медалях на аверсе отчеканено изображение Альфреда Нобеля, а на реверсе – аллегория соответствующей научной дисциплины.

На медали по физике отчеканено аллегорическое изображение Природы в виде богини, поднимающейся из облаков. В руках у нее рог изобилия. Ее лицо закрывает вуаль, которую приподнимает аллегория Науки.

Надпись по латыни гласит: "Inventas vitam juvat excoluisse per artes". Эта строка взята из поэмы Вергилия "Энеида" и в приблизительном переводе звучит примерно так: "И те, кто улучшили жизнь на Земле своим вновь обретенным мастерством".

Медаль была создана шведским скульптором Эриком Линдбергом.

Правообладатель иллюстрации Getty Images Image caption Лев Ландау в год присуждения Нобелевской премии (1962)

В Советском Союзе больше всего лауреатов Нобелевской премии было именно по физике – 11 человек, в том числе Лев Ландау, Петр Капица, Алексей Абрикосов и Виталий Гинзбург.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама