THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Оптическое излучение (или свет в широком смысле слова) – это электромагнитные волны, длины которых находятся в диапазоне от 10 -11 до 10 -2 м (от единиц до десятых долей мм) или диапазон частот которых примерно равен 3*10 11 …3*10 17 Гц.

Как и для любого другого излучения, имеется источник оптического излучения и приёмник оптического излучения . Приёмником оптического излучения, может быть, например, человеческий глаз. Человеческий глаз способен воспринимать оптическое излучение с длиной волны от 400 до 760 нм. Это видимое излучение . Кроме видимого излучения, к оптическому излучению также относятся инфракрасное излучение (с длиной волны от 0,75 до 2000 мкм) и ультрафиолетовое излучение (с длиной волны от 10 до 400 нм). Световые волны изучают с помощью оптических методов, которые исторически сложились при анализе законов видимого света.

В 17-м веке были высказаны первые научные гипотезы о природе света. Свет обладает энергией и переносит её в пространстве. Переносить энергию могут либо тела, либо волны, поэтому о природе света вдвинуты две теории.

Корпускулярная теория света (от латинского corpusculum – частица) была предложена в 1672 году английским учёным Исааком Ньютоном (1643 – 1727). Согласно этой теории, свет – это поток частиц, которые во все стороны испускает источник света . С помощью этой теории объяснялись такие оптические явления, как, например, различные цвета излучения.

Голландским учёным Христианом Гюйгенсом (1629 – 1695) также в 17-м веке была создана волновая теория света , согласно которой свет имеет волновую природу. С помощью этой теории хорошо объясняются такие явления, как интерференция , дифракция света и т.д.

Обе эти теории длительное время существовали параллельно, так как ни одна из них в отдельности не могла полностью объяснить все оптические явления. К началу 19-го века после исследований французского физика Огюстена Жана Френеля (1788 – 1827), английского физика Роберта Гука (1635 – 1703) и других учёных выяснилось, что волновая теория света имеет преимущество перед корпускулярной. В 1801 году английский физик Томас Юнг (1773 – 1829) сформулировал принцип интерференции (усиление или ослабление освещённости при наложении световых волн друг на друга), что позволило ему объяснить цвета тонких плёнок. Френель объяснил, что такое дифракция света (огибание светом препятствий) и прямолинейность распространения света.

И всё же волновая теория света имела один существенный недостаток. В ней предполагалось, что световое излучение представляет собой поперечные механические волны, которые могут возникать только в упругой среде. Поэтому была создана гипотеза о невидимом мировом эфире, который представляет собой гипотетическую среду, заполняющую всю Вселенную (всё пространство между телами и молекулами). Мировой эфир должен был обладать целым рядом противоречивых свойств: должен обладать упругими свойствами твёрдых тел и быть одновременно невесомым. Эти трудности были разрешены во 2-й половине 19-го века при последовательном развитии учения английским физиком Джеймсом Клерком Максвеллом (1831 – 1879) об электромагнитном поле. Максвелл пришёл к вводу, что свет есть частный случай электромагнитных волн.

Однако в начале 20-го века были обнаружены прерывистые, или квантовые свойства света . Этим свойствам давала объяснение корпускулярная теория. Таким образом, свет обладает корпускулярно-волновым дуализмом (двойственностью свойств). В процессе распространения свет обнаруживает волновые свойства (то есть ведёт себя как волна), а при излучении и поглощении – корпускулярные свойства (то есть ведёт себя как поток частиц).

Законы распространения света в прозрачных средах на основе представлений о световом луче рассматриваются в разделе оптики, который называется . Подразумевается, сто световой луч – это линия, вдоль которой распространяется энергия световых электромагнитных волн.

Закон прямолинейного распространения света

На практике свет распространяется прямолинейно внутри ограниченного конуса, который представляет собой световой пучок. Диаметр этого светового пучка превосходит длину световой волны.

Если показатель преломления среды везде одинаков, то такая среда называется оптически однородная среда .

В прозрачной однородной среде свет распространяется прямолинейно. В этом состоит закон прямолинейного распространения света .

Прямолинейность распространения света подтверждается многими явлениями, например, появлением тени от непрозрачных тел. Если S – очень маленький по размеру источник света, а М – непрозрачное тело, преграждающее путь падающему на него свету S, то за телом М образуется конус тени. Свет, идущий от источника, задерживается телом М, и на экране, который помещён под прямым углом к оси конуса, получается хорошо очерченная тень тела М (см. рис. 1.1).

Рис. 1.1. Прямолинейность распространения света.

Источники света больших размеров (по сравнению с расстоянием от источников света до препятствия) образуют полутень. Образование полутени можно рассмотреть с помощью двух источников малых размеров, которые находятся друг от друга на расстоянии, равном размеру большого источника света. На рис. 1.2 показано сечение конусов тени, которые образуются светом за телом М. Полная тень образуется позади непрозрачного тела М в той области, куда не попадает свет ни от одного источника света.

Полутень (частично освещённое пространство) образуется в области, где проходят лучи только от одного из источников света. Например, в области, где проходят лучи только источника S1, а другой источник света S2 заслонён телом М. Если источник света большой, то каждая его точка может рассматриваться как точечный источник света. В этом случае будет происходить сложение излучения от отдельных частей излучающей поверхности. Также образуются области тени и полутени.

Рис. 1.2. Полутень, образованная большим источником света.

Образование тени при падении лучей от источника света на непрозрачный предмет объясняет такие явления, как солнечные и лунные затмения.

Такое свойство, как прямолинейность распространения света , используется при определении расстояний на земле, на море и в воздухе, а также в производстве при контроле по лучу зрения прямолинейности изделий и инструментов.

Прямолинейность распространения света объясняет возможность получения изображений с помощью малого отверстия. Простейшее устройство, позволяющее наблюдать перевёрнутое изображение предметов, называется камера-обскура и представляет собой ящик с небольшим отверстием в передней стенке. Луч света, который распространяется прямолинейно, попадает на заднюю стенку камеры-обскура, где появляется световое пятно с соответствующей интенсивностью. Совокупность световых пятен от всех точек предмета и создаёт изображение этого предмета на задней стенке камеры-обскура.

Повторение изученного материала.

Что такое оптика?

Что такое геометрическая оптика?

Приведите примеры естественных и искусственных источников света.

Что такое луч?

Закон прямолинейного распространения света.

Что такое тень?

Что такое полутень?

Закон отражения света.

Изучение нового материала.

Развитие оптики и технический прогресс. Создание оптических приборов.

Жизнь на Земле возникла и существует благодаря солнечному свету. Благодаря нему мы воспринимаем и познаем окружающий мир. Лучи света сообщают нам о положении близких и отдаленных предметов, об их форме и цвете. Свет, усиленный оптическими приборами, открывает человеку два полярных по масштабам мира: космический мир с его огромными протяженностями и микроскопический, населенный неразличимыми простым глазом мельчайшими организмами.

Основы оптики были заложены еще в глубокой древности. Варка прозрачного стекла была известна древним египтянам и жителям Мессопотамии за 1600 лет до нашей эры, а в древнем Риме из стекла с высоким совершенством изготовляли посуду и украшения. В XIII веке человечество получило первые оптические приборы - очки и увеличительные стекла. Значительно позднее, в начале XVII века, были изобретены зрительная труба и микроскоп.

В 1609 году итальянский ученый Галилей изобрел подзорную трубу с отрицательной линзой в качестве окуляра и широко использовал ее для наблюдений. В России очки и зрительные трубы появились в начале XVII веке.

Создание теории оптических приборов началось в конце XVII века благодаря трудам выдающихся ученых: Р. Декарта, П. Ферма, И. Ньютона, К. Гаусса и других. Большой вклад в развитие мировой науки и техники в области оптики внесли русские ученые М. В. Ломоносов, Л. Эйлер, В. Н. Чиколев, механики И. П. Кулибин, О. Н. Малофеев.

В России при Петре 1 оптика получила свое дальнейшее развитие. В 1725 году при Академии Наук была организована кафедра оптики и оптическая мастерская. Одним из руководителей кафедры оптики был Л. Эйлер, который написал книгу “Диоптрика”, где изложил основы геометрической оптики.

М. В. Ломоносов был первым русским ученым, который применил микроскоп для научных исследований, он создал целый ряд принципиально новых оптических приборов, разработал способы изготовления цветного стекла, цветной мозаики. Трудами выдающихся русских М.В.Ломоносова и Л.Эйлера в XVIII веке были заложены главнейшие основы для развития оптического производства в России. После революции 1917 года в Петрограде в 1918 году был организован Государственный Оптический Институт, его возглавил академик Д.С.Рождественский. ГОИ явился центром, определяющим научную политику в области создания отечественной оптическо-механической промышленности. В ГОИ работали выдающиеся ученые: С.И.Вавилов, А.А.Лебедев, И.В.Гребенщиков, Н.Качалов и другие.

В послевоенные годы наша оптическая промышленность с успехом осваивала производство уникальных высокоточных приборов, электронных микроскопов, интерферометров, приборов для космических исследований.

На базе явлений фотоэлектрического эффекта, открытого русским ученым А.Г.Столетовым, успешно развивается фотоэлектрическая область оптики, нашедшая применение в автоматике, телевидении, управлении космическими кораблями.

К числу крупных достижений отечественной оптики относятся работы профессора М.М.Русинова. Созданные им широкоугольные аэрофотообъективы выдвинули советскую аэрофотсъемку на ведущее место в мире.

Создание аппаратуры для фотографирования невидимой с Земли обратной стороны Луны явилось началом развития нового направления оптического приборостроения – космически оптических приборов.

Исследования советских физиков Н.Г.Басова и А.М.Прохорова в середине 50-х года XX века стали тем зерном, из которого выросла новая область науки – квантовая электроника. В 1971 году Денис Габор получил Нобелевскую премию за открытие голографии.

Еще в 1930 году в Германии Ламм передал по оптическим волокнам не только свет, но и изображение. Но технология изготовления стеклянных волокон была очень сложной, поэтому идеи Ламма на долгие годы остались забытыми.

Современная наука подняла на гребень волны волоконную оптику.

История развития взглядов на природу света

Первые представления о природе света были заложены в глубокой древности. Греческий философ Платон (427–327 гг до н.э.) создал одну из первых теорий света.

Евклид и Аристотель (300–250 гг до н.э.) опытным путем установили такие основные законы оптических явлений, как прямолинейное распространение света и независимость световых пучков, отражение и преломление. Аристотель впервые объяснил сущность зрения.

Несмотря на то, что теоретические положения древних философов, а позднее и ученых средних веков, были недостаточными и противоречивыми, они способствовали формированию правильных взглядов на сущность световых явлений и положили начало дальнейшему развития теории света и созданию разнообразных оптических приборов. По мере накопления новых исследований о свойствах световых явлений изменилась точка зрения на природу света. Ученые считают, что историю изучения природы света следует начинать с XVII века.

В XVII веке датский астроном Ремер (1644–1710) измерил скорость распространения света, итальянский физик Гримальди (1618–1663) открыл явление дифракции, гениальный английский ученый И.Ньютон (1642–1727) развил корпускулярную теорию света, открыл явления дисперсии и интерференции, Э.Бартолин (1625–1698) обнаружил двойное лучепреломление в исландском шпате, заложив тем самым основы кристаллооптики. Гюйгенс (1629–1695) положил начало волновой теории света.

В XVII веке делаются первые попытки теоретического обоснования наблюдаемых световых явлений. Корпускулярная теория света, развитая Ньютоном, состоит в том, что световое излучение рассматривается как непрерывный поток мельчайших частиц – корпускул, которые испускаются источником света и с большой скоростью летят в однородной среде прямолинейно и равномерно.

С точки зрения волновой теории света, основоположником которой является Х.Гюйгенс, световое излучение представляет собой волновое движение. Световые волны Гюйгенс рассматривал как упругие волны высокой частоты, распространяющиеся в особой упругой и плотной среде – эфире, заполняющем все материальные тела, промежутки между ними и межпланетные пространства.

Электромагнитная теория света была создана в середине XIX века Максвеллом (1831–1879). Согласно этой теории световые волны имеют электромагнитную природу, а световое излучение можно рассматривать как частный случай электромагнитных явлений. Исследования Герца и в дальнейшем П.Н.Лебедева также подтвердили, что все основные свойства электромагнитных волн совпадают со свойствами световых волн.

Лоренц (1896) установил взаимосвязь между излучением и структурой вещества и развил электронную теорию света, согласно которой входящие в состав атомов электроны могут совершать колебания с известным периодом и при определенных условиях поглощать или испускать свет.

Электромагнитная теория Максвелла в сочетании с электронной теорией Лоренса объясняла все известные тогда оптические явления и, казалась полностью раскрывала проблему природы света.

Световые излучения рассматривались как периодические колебания электрической и магнитной силы, распространяющейся в пространстве со скоростью 300000 километров в секунду. Лоренс полагал, что носитель этих колебаний – электромагнитный эфир, обладает свойствами абсолютной неподвижности. Однако созданная электромагнитная теория вскоре оказалась несостоятельной. Прежде всего эта теория не учитывала свойства реальной среды в которой распространяются электромагнитные колебания. Кроме того, с помощью этой теории нельзя было объяснить ряд оптических явлений, с которыми столкнулась физика на рубеже XIX и XX веков. К таким явления относятся процессы излучения и поглощения света, излучение абсолютно черного тела, фотоэлектрический эффект и другие.

Квантовая теория света возникла в начале XX века. Она была сформулирована в 1900 году, а обоснована в 1905 году. Основоположниками квантовой теории света являются Планк и Эйнштейн. Согласно этой теории, световое излучение испускается и поглощается частицами вещества не непрерывно, а дискретно, то есть отдельными порциями – квантами света.

Квантовая теория как бы в новой форме возродила корпускулярную теорию света, по существу же она явилась развитием единства волновых и корпускулярных явлений.

В результате исторического развития современная оптика располагает обоснованной теорией световых явлений, которая может объяснить различные свойства излучений и позволяет ответить на вопрос о том, в каких условиях те или иные свойства световых излучений могут проявляться. Современная теория света подтверждает его двойственную природу: волновую и корпускулярную.

Скорость света

Одна из характерных черт физика – количественный характер ее законов. Во многие соотношения, выражающие законы физики входят некоторые постоянные – так называемые физические константы. Это, например, гравитационная постоянная в законе всемирного тяготения, удельная теплоемкость в уравнении теплового баланса, скорость света в законе Эйнштейна, связывающем массу тела и его полную энергию. Многие физические постоянные названы так весьма условно. Действительно, нагревается вместо воды спирт и в соответствующих уравнениях приходится использовать иную величину теплоемкости. Такими “относительными” постоянными являются коэффициент трения, удельное сопротивление, плотность и т.д. Но есть и константы, которые не меняют своего значения. Гравитационная постоянная не зависит от того, взаимодействуют ли тела из свинца или из стали. Электроны в меди и золоте имеют одинаковый заряд. Так же универсальна и постоянная с – скорость света в вакууме.

Именно вследствие своей универсальности, такие константы названы мировыми или фундаментальными постоянными. Величины фундаментальных постоянных определяют важнейшие особенности всего физического мира – от элементарных частиц до крупнейших астрономических объектов.

Принадлежность скорости света к весьма небольшой группе мировых постоянных объясняет интерес к этой величине. Однако надо признать, что даже в этой группе она занимает выдающееся место. Скорость света связана с физическими законами, относящимися к самым, казалось бы, далеким разделам физики. Постоянная с входит в преобразования Лоренца в специальной теории относительности, она связывает электрическую и магнитную постоянные. Формула Эйнштейна Е=mc 2 позволяет рассчитать количество энергии, выделяющейся при ядерных превращениях. И везде мы сталкиваемся со скоростью света.

Такая распространенность константы с служит для современной физики ярким проявлением единства физического мира и правильности пути, по которому развивается наука о природе.

Понимание этого единства прошло не сразу. Со времени первого определения значения скорости света прошло более 300 лет. Постепенно константа с раскрывала перед учеными свои тайны. Иногда за измерениями этой величины стояли годы целенаправленных поисков, работы по усовершенствованию методов измерения и научных приборов. Иногда скорость света возникала в экспериментах возникала неожиданно, ставя перед учеными вопросы, касавшиеся самых глубин физической науки. Измерение константы опровергали и подтверждали физические теории и способствовали прогрессу техники.

Существуют прямые и косвенные методы измерения скорости света. К прямым методам относятся опыты О.Ремера, А.Физо, Л.Фуко, А.Майкельсона. К косвенным методам относятся опыты Д.Брадлея, Ф.Кольрауша, В.Вебера.

Прямой способ основан на измерении пути, пройденного светом и времени прохождения этого пути c=l/t . В 1676 году Ремер наблюдал за затмением спутника Юпитера – Ио. Спутник проходил пeред планетой, а затем погружался в ее тень и пропадал из поля зрения. Через 42 часа 28 минут Ио появлялся опять. Ремер проводил измерения, когда Земля ближе всего подходила к Юпитеру. Когда через несколько месяцев он повторил наблюдения, то оказалось, что спутник появился из тени на 22 минуты позже. Ученый объяснил, 22 минуты свет затрачивает на прохождение из предыдущей точки наблюдения до нынешней точки. Зная время запаздывания и расстояние, которым оно вызвано, можно определить скорость света. Вследствие неточности измерений и неточного значения радиуса Земли Ремер получил значение скорости света равное 215000 километров в секунду.

В лабораторных условиях скорость света впервые удалось измерять в 1849 году французскому физику Физо. В его опыте свет от источника, пройдя через линзу, падал на полупрозрачную стеклянную пластинку. Отразившись от пластинки узкий пучок направлялся на периферию быстро вращающегося колеса. Пройдя между зубцами свет достигал зеркала, находившегося на расстоянии нескольких километров от колеса. Отразившись от зеркала, свет проходил между зубцами колеса и затем попадал в глаз наблюдателя. Когда скорость вращения была маленькой, свет отраженный от зеркала был виден, при увеличении скорости вращения он исчезал. При дальнейшем увеличении скорости вращения, свет опять становился виден. То есть, за время распространения света до зеркала и обратно колесо успевало повернуться на столько, что на место прежней прорези вставала уже новая прорезь. Зная это время и расстояние между колесом и зеркалом можно определить скорость света. В опыте Физо расстояние равнялось 8,6 километров, а скорость света получилась равной 313000 километров в секунду.

В основе косвенного способа измерения скорости света лежит представление о свете как об электромагнитной волне и ее скорость находится путем умножения длины волны на частоту колебаний волны.

Развивая теорию электродинамики Ампера, в 1846 году Вебер и Кальрауш получили значение скорости света 310000 километров в секунду, но полученный результат объяснить они не могли, так как не существовало ясного понимания механизма передачи взаимодействия электрических зарядов. Формально теория дальнодействующих электромагнитных сил Вебера не сталкивалась со сколь-нибудь серьезной оппозицией, но уже зрели идеи близкодействия, важнейшим следствием которых является конечность скорости распространения взаимодействий.

Современная физика решительно утверждает, что история скорости света на закончена. Свидетельством тому служат работы по измерению скорости света, выполненные в последние годы.

Резкое повышение точности измерения скорости электромагнитных волн произошло после Второй мировой войны. Исследования, проведенные в военных целях, кроме угрозы существованию человечеству принесли множество важнейших, чисто научных результатов. Один из них – развитие техники сверхвысоких частот. Были созданы генераторы и приемники излучения, работающие в диапазоне длин волн от 1 метра до нескольких миллиметров. В СВЧ-диапазоне волн удалось провести очень точные и, что самое важное, независимые измерения частоты излучения и его длины волны. Такой метод определения скорости света очень удобен, так как длины волн порядка одного сантиметра можно определить с очень высокой точностью.

Конечно, не следует думать, что измерить величину с , используя новую технику, было очень просто. Каждый ученый, работавший в этой области, ставил перед собой задачу-максимум: провести предельно точные измерения длины волны и частоты для получения возможно более точного значения скорости света, а работа на пределе точности всегда сложна.

Определенным итогом измерения скорости света в СВЧ-диапазоне стала работа американского ученого К.Фрума, результаты которой были опубликованы в 1958 году. Ученый получил результат 299792,50 километров в секунду. В течение длительного периода эта величина считалась наиболее точной.

Для того, чтобы повысить точность определения скорости света требовалось создание принципиально новых методов, которые позволили бы проводить измерения в области больших частот и соответственно, меньших длин волн. Возможность разработки таких методов появилась после создания оптических квантовых генераторов – лазеров. Точность определения скорости света возросла по отношению к опытам Фрума практически в 100 раз. Способ определения частот с помощью использования лазерного излучения дает величину скорости света, равную 299792,462 километра в секунду.

Физики продолжают исследовать вопрос о постоянстве скорости света во времени. Исследования скорости света могут дать еще много нового для познания природы, неисчерпаемой в своем разнообразии. 300-летняя история фундаментальной постоянной с отчетливо демонстрируют ее связи с важнейшими проблемами физики.

Решение задач

1. Из древнегреческой легенды о Персее:

“Не далее полета стрелы было чудовище, когда Персей взлетел высоко в воздух. Тень его упала в море, и с яростью ринулось чудовище на тень героя. Персей смело бросился с высоты на чудовище и глубоко вонзил ему в спину изогнутый меч…”

Вопрос: что такое тень и благодаря какому физическому явлению она образуется? Нарисуйте ход лучей.

2. Из африканской сказки “Выборы вождя”:

“Собратья, – молвил Аист, степенно выйдя в середину круга. – Мы спорим с самого утра. Смотрите, наши тени уже укоротились и скоро совсем исчезнут, ибо близится полдень. Так давайте еще до того, как солнце минует зенит, придем к какому-то решению…”

Вопрос: почему длины теней, которые отбрасывали люди стали укорачиваться? Ответ поясните рисунком. Есть ли на Земле такое место, где изменение длины тени минимально?

3. Из итальянской сказки “Человек, который искал бессмертие”:

“И тут Грантэста увидел что-то, что показалось ему страшнее бури. К долине приближалось чудовище, летевшее быстрее, чем луч света. У него были кожистые крылья, бородавчатый мягкий живот и огромная пасть с торчащими зубами…”

Вопрос: что неверно с точки зрения физики в этом отрывке?

4. Из древнегреческой легенды о Персее:

“Скорей отвернулся Персей от горгон. Боится увидеть он их грозные лица: ведь один взгляд и в камень обратится он. Взял Персей щит Афины-Паллады – как в зеркале отразились в нем горгоны. Которая же из них Медуза?

Как падает с неба орел на намеченную жертву, так ринулся Персей к спящей Медузе. Он глядит в ясный щит, чтоб верней нанести удар…”

Вопрос: какое физическое явление использовал Персей, чтобы обезглавить Медузу? Нарисуйте возможный ход лучей.

Домашнее задание

Введение, п. 40 (Г.Я. Мякишев, Б.Б.Буховцев “Физика. 11”)

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

От источника света (от лампочки) свет распространяется во все стороны и падает на окружающие предметы, вызывая их нагревание. Попадая в глаз, свет вызывает зрительное ощущение- мы видим. источник приемник При распространения света происходит передача воздействия от источника к приемнику.

3 слайд

Описание слайда:

Два способа передачи воздействий: перенос вещества от источника к приемнику; посредством изменения состояния среды между телами (без переноса вещества).

4 слайд

Описание слайда:

Теории света: корпускулярная теория света Ньютона: свет -это поток частиц, идущих от источника во все стороны (перенос вещества) 2. волновая теория света Гюйгенса: свет- это волны, распространяющиеся в особой гипотетической среде - эфире, заполняющем все пространство и проникающем внутрь всех тел. 3. Электромагнитная теория света Максвелла: свет – это частный случай электромагнитных волн. При распространении свет ведет себя как волна. 4. Квантовая теория света: при излучении и поглощении свет ведет себя подобно потоку частиц.

5 слайд

Описание слайда:

ПРИРОДА СВЕТА Оптика – раздел физики, изучающий световые явления. Что такое свет? Взгляды ученых на природу света с течением времени изменялись. С 18 века в физике шла борьба между приверженцами волновой теории и корпускулярной теории. Известный ученый И.Ньютон считал: свет - это поток корпускул (частиц), выбрасываемых светящимся телом, которые распространяются в пространстве прямолинейно. Это предположение подтверждалось законом прямолинейного распространения света. Английский ученый Р.Гук читал: свет – это механические волны. Подтверждением этой теории были работы Х. Гюйгенса, Т. Юнга, О. Френеля и др. По современным представлениям свет имеет двойственную природу (корпускулярно-волновой дуализм): - свет обладает волновыми свойствами и представляет собой электромагнитные волны, но одновременно является и потоком частиц – фотонов. В зависимости от светового диапазона проявляются в большей мере те или иные свойства.

6 слайд

Описание слайда:

7 слайд

Описание слайда:

8 слайд

Описание слайда:

9 слайд

Описание слайда:

При распространении света преобладают волновые свойства При взаимодействии света с веществом преобладают квантовые свойства Корпускулярно-волновой дуализм- это проявление взаимосвязи двух основных форм материи, изучаемых физикой,- вещества и поля.

10 слайд

Описание слайда:

11 слайд

Описание слайда:

Геометрическая оптика – раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представлений о световом луче. Опытное определение скорости света: первые попытки определения скорости света. астрономический метод измерения скорости света (О. Ремер, 1676) лабораторный метод измерения скорости света (И.Физо,1849г) определение скорости света Майкельсоном. определение скорости света Эссеном и Фрумом. значение скорости света, полученное с помощью современных методов ее измерения.

12 слайд

Описание слайда:

ОлеКристенсенРёмер Ole ChristensenRømer Дата рождения: 25 сентября1644 Дата смерти: 19 сентября1710(65 лет) Страна: Дания Научная сфера: астрономия Альма-матер: Копенгагенский университет

13 слайд

Описание слайда:

Астрономический метод измерения скорости света 1676 г. – скорость света впервые удалось измерить датскому ученому О. Рёмеру. Рёмер наблюдал затмения спутников Юпитера - самой большой планеты Солнечной системы. Юпитер в отличие от Земли имеет 67 открытых спутников. Ближайший его спутник – Ио – стал предметом наблюдений Рёмера. Он видел, как спутник проходил перед планетой, а затем погружался в ее тень и пропадал из поля зрения. Затем он опять появлялся, как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками оказался равным 42 ч 28 мин. Т.о., эта «луна» представляла собой громадные небесные часы, через равные промежутки времени посылавшие свои сигналы на Землю.

14 слайд

Описание слайда:

В 1676 г. Ремер определил скорость света, наблюдая затмение спутника Юпитера Ио. Суть метода заключается в измерении времени затмения спутника Юпитера при наблюдении с Земли в положениях 1 и 2 . Расстояние между точками 1 и 2 равно диаметру земной орбиты.

15 слайд

Описание слайда:

Зная запаздывание появления Ио и расстояние, которым оно вызвано, можно определить скорость, разделив это расстояние на время запаздывания. Скорость оказалась чрезвычайно большой, примерно 300.000 км/с. Поэтому-то крайне трудно уловить время распространения света между двумя удаленными точками на Земле. Ведь за одну секунду свет проходит расстояние, большее длины земного экватора в 7,5 раза. «Если бы я мог остаться на другой стороне земной орбиты, то спутник всякий раз появлялся бы из тени в назначенное время, наблюдатель, находящийся там, увидел бы Ио на 22 мин раньше. Запаздывание в этом случае происходит от того, что свет употребляет 22 мин на прохождение от места моего первого наблюдения до моего теперешнего положения». Период обращения Юпитера 11,86 лет. 12 лет- 3600 1 год – 3600:12=300 полгода- 150

16 слайд

Описание слайда:

ИЗМЕРЕНИЕ СКОРОСТИ СВЕТА Астрономический метод В 1676 году впервые осуществил измерение света датский физик О. Ремер. Ремер наблюдал затмение спутника Юпитера Ио. Ио – спутник Юпитера I – спутник находился в тени Юпитера 4ч. 28 мин. II – спутник вышел из тени на 22 мин. позже Измерения проводились дважды: при наименьшем удалении Юпитера от Земли и через 6 месяцев, когда расстояние между Землей и Юпитером становилось наибольшим. Полученное различие в продолжительности времени затмения объяснялось тем, что свет, распространяясь с конечной скоростью должен был пройти дополнительное расстояние, равное диаметру орбиты Земли. Из-за плохой точности измерений Ремер получил лишь очень приблизительное значение скорости света 215 000 км/с.

17 слайд

Описание слайда:

Ипполит Физо: 23 сентября 1819 - 18 сентября 1896 знаменитый французский физик, член Парижской АН

18 слайд

Описание слайда:

Лабораторные методы измерения скорости света Впервые скорость света лабораторным методом удалось измерить французскому физику И. Физо в 1849 г. В опыте Физо свет от источника, пройдя через линзу, падал на полупрозрачную пластинку 1 (рис.2). После отражения от пластинки сфокусированный узкий пучок направлялся на периферию быстро вращающегося зубчатого колеса. Пройдя между зубцами, свет достигал зеркала 2, находившегося на расстоянии нескольких километров от колеса. Отразившись от зеркала, свет, прежде чем попасть в глаз наблюдателя, должен был пройти опять между зубцами. Когда колесо вращалось медленно, свет, отраженный от зеркала, был виден. При увеличении скорости вращения он постепенно исчезал. Пока свет, прошедший между двумя зубцами, шел до зеркала и обратно, колесо успевало повернуться так, что на место прорези вставал зубец, и свет переставал быть видимым. При дальнейшем увеличении скорости вращения свет опять становился видимым. Очевидно, что за время распространения света до зеркала и обратно колесо успело повернуться настолько, что на место прежней прорези встала уже новая прорезь. Зная это время и расстояние между колесом и зеркалом, можно определить скорость света. В опыте Физо расстояние равнялось 8,6 км и для скорости света было получено значение 313.000 км/с. Рис.2
















1 из 15

Презентация на тему: Развитие взглядов на природу света

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Первые представления о свете Первые представления о том, что такое свет, относятся также к древности. В древности представления о природе света были весьма примитивными, фантастическими и к тому же весьма разнообразными. Однако, несмотря на разнообразие взглядов древних на природу света, уже в то время наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории – корпускулярную и волновую теории света.Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз.При этом выделялось три основных взгляда на природу света.Глаз->предметПредмет->глазДвижение

№ слайда 3

Описание слайда:

Первая теория Одни из древних ученых полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела сначала большое число последователей. Такие крупнейшие ученые и философы, как Евклид, Птолемей и многие другие придерживались ее. Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой.

№ слайда 4

Описание слайда:

Вторая теория Другие философы, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения держались атомисты Демокрит, Эпикур, Лукреций. Эта точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

№ слайда 5

Описание слайда:

Третья теория Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет не как истечение чего-то от светящегося предмета в глаз и тем более не как некие лучи, исходящие из глаза и ощупывающие предмет, а как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

№ слайда 6

Описание слайда:

Средневековье Наиболее интересной работой по оптике, дошедшей до нас из средневековья, является работа арабского ученого Альгазена. Он занимался изучением отражения света от зеркал, явления преломления и прохождения света в линзах. Ученый придерживался теории Демокрита и впервые высказал мысль о том, что свет обладает конечной скоростью распространения. Эта гипотеза явилась крупным шагом в понимании природы света.

№ слайда 7

Описание слайда:

XVII век На базе многочисленных опытных фактов в середине XVII века возникают две гипотезы о природе световых явлений: Корпускулярная теория Ньютона, которая предполагала, что свет есть поток частиц, выбрасываемых с большой скоростью светящимися телами. Волновая теория Гюйгенса, которая утверждала, что свет представляет собой продольные колебательные движения особой светоносной среды (эфира), возбуждаемой колебаниями частиц светящегося тела.

№ слайда 8

Описание слайда:

Основные положения корпускулярной теории Свет состоит из малых частичек вещества, испускаемых во всех направлениях по прямым линиям, или лучам, светящимся телом, например, горящей свечой. Если эти лучи, состоящие из корпускул, попадают в наш глаз, то мы видим их источник. Световые корпускулы имеют разные размеры. Самые крупные частицы, попадая в глаз, дают ощущение красного цвета, самые мелкие – фиолетового. Белый цвет – смесь всех цветов: красного, оранжевого, желтый, зеленый, голубой, синий, фиолетовый. Отражение света от поверхности происходит вследствие отражения корпускул от стенки по закону абсолютного упругого удара.

№ слайда 9

Описание слайда:

Основные положения корпускулярной теории Явление преломления света объясняется тем, что корпускулы притягиваются частицами среды. Чем среда плотнее, тем угол преломления меньше угла падения. Явление дисперсии света, открытое Ньютоном в 1666 г., он объяснил следующим образом. «Каждый цвет уже присутствует в белом свете. Все цвета передаются через межпланетное пространство и атмосферу совместно и дают эффект в виде белого света. Белый свет – смесь разнообразных корпускул – испытывает преломление, пройдя через призму». Ньютон наметил пути объяснения двойного лучепреломления, высказав гипотезу о том, что лучи света обладают "различными сторонами" – особым свойством, обуславливающим их различную преломляемость при прохождении двоякопреломляющего тела.

№ слайда 10

Описание слайда:

Основные положения корпускулярной теории Корпускулярная теория Ньютона удовлетворительно объяснила многие оптические явления, известные в то время. Ее автор пользовался в научном мире колоссальным авторитетом, и в скоре теория Ньютона приобрела многих сторонников во всех странах. Крупнейшие ученые придерживающиесяэтой теории: Араго, Пуассон, Био, Гей-Люссак.На основе корпускулярной теории было трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые частицы должны сталкиваться и рассеиваться (волны же проходят друг сквозь друга, не оказывая взаимноговлияния)

№ слайда 11

Описание слайда:

Основные положения волновой теории Свет – это распространение упругих периодичных импульсов в эфире. Эти импульсы продольны и похожи на импульсы звука в воздухе. Эфир – гипотетическая среда, заполняющая небесное пространство и промежутки между частицами тел. Она невесома, не подчиняется закону всемирного тяготения, обладает большой упругостью. Принцип распространения колебаний эфира таков, что каждая его точка, до которой доходит возбуждение, является центром вторичных волн. Эти волны слабы, и эффект наблюдается только там, где проходит их огибающая поверхность – фронт волны (принцип Гюйгенса). Чем дальше волновой фронт от источника, тем более плоским он становится. Световые волны, приходящие непосредственно от источника, вызывают ощущение видения. Очень важным пунктом теории Гюйгенса явилось допущение конечности скорости распространения света.

№ слайда 12

Описание слайда:

Волновая теория С помощью теории объясняются многие явления геометрической оптики: – явление отражения света и его законы; – явление преломления света и его законы; – явление полного внутреннего отражения; – явление двойного лучепреломления; – принцип независимости световых лучей. Теория Гюйгенса давала такое выражение для показателя преломления среды: Из формулы видно, что скорость света должна зависеть обратно пропорционально от абсолютного показателя среды. Этот вывод был противоположен выводу, вытекающему из теории Ньютона.

№ слайда 13

Описание слайда:

Волновая теория Многие сомневались в волновой теории Гюйгенса, но среди малочисленных сторонников волновых взглядов на природу света были М. Ломоносов и Л. Эйлер. С исследований этих ученых теория Гюйгенса начала оформляться как теория волн, а не просто апериодических колебаний, распространяющихся в эфире. Трудно было объяснить прямолинейное распростронение света, приводящее к образованию за предметами резких теней (по корпускулярной теории прямолинейное движение света является следствием закона инерции)Явление дифракции (огибания светом препятствий) и интерференции (услиление или ослабление света при наложении световых пучков друг на друга) можно объяснить только с точки зрения волновой теории.

№ слайда 14

Описание слайда:

XI-XX столетия Во второй половине XIX века Максвелл показал, что свет есть частный случай электромагнитных волн. Работами Максвелла были заложены основы электромагнитной теории света.После экспериментального обнаружения электромагнитных волн Герцем никаких сомнений в том, что при распространении свет ведет себя как волна, не осталось. Нет их и сейчас.Однако в начале XX века представления о природе света начали коренным образом изменяться. Неожиданно выяснилось, что отвергнутая корпускулярная теория все же имеет отношение к действительности. Оказалось, что при излучении и поглощении свет ведет себя подобно потоку частиц.

№ слайда 15

Описание слайда:

XI-XX столетия Были обнаружены прерывистые (квантовые) войства света. Возникла необычная ситуация: явления интерференции и дифракции по-прежнему можно было объяснить, считая свет волной, а я вления излучения и поглощения – считая свет потоком частиц.Поэтому ученые сошлись на мнении о корпускулярно-волновом дуализме (двойственности) свойст света. В наши дни теория света продолжает развиваться.

Первые представления о природе света , возникшие у древних греков и египтян, в дальнейшем, по мере изобретения и усовершенствования различных оптических приборов, развивались и трансформировались.

В средние века стали известны эмпирические правила построения изображений, даваемых линзами. В 1590 г. З. Янсен построил первый микроскоп, в 1609 г. Г. Галилей изобрел телескоп. Количественный закон преломления света при прохождении границы раздела двух сред установил в 1620 г. В. Снеллиус. Математическая запись этого закона в виде , принадлежит Р. Декарту (1637 г.) Он же попытался объяснить этот закон исходя из корпускулярной теории . Впоследствии формулировкой принципа Ферма (1660 г.) был завершен фундамент построения геометрической оптики.

Дальнейшее развитие оптики связано с открытиями дифракции и интерференции света (Ф. Гримальди, 1665 г.), двойного лучепреломления (Э. Бартолин, 1669 г.) и с работами И. Ньютона, Р. Гука, Х. Гюйгенса.

В конце XVII века на основе многовекового опыта и развития представлений о свете возникли две мощные теории света – корпускулярная (Ньютон – Декарт) и волновая (Гук – Гюйгенс).

Корпускулярные воззрения на природу света И. Ньютон развил в стройную теорию истечения. Свет корпускулы , испускаемые телами и летящие с огромной скоростью. К анализу движения световых корпускул Ньютон, естественно, применил сформулированные им законы механики. Из этих представлений он легко вывел законы отражения и преломления света (рис. 7.11):

Рис. 7.11 - 7.13

Однако из рассуждений Ньютона следовало, что скорость света в веществе больше скорости света в вакууме : .

Кроме того, в 1666 г. Ньютон показал, что белый свет является составным и содержит «чистые цвета», каждый из которых характеризуется своей преломляемостью (рис. 7.12), т.е. дал понятие дисперсии света. Эта особенность была объяснена различием масс корпускул.

В то же время в XVII в. (наряду с концепцией Декарта – Ньютона) развивалась противоположная, волновая теория Гука – Гюйгенса о том, что свет есть процесс распространения продольных деформаций в некоторой среде , пронизывающей все тело , в мировом эфире .

К концу XVII в. в оптике сложилось весьма своеобразное положение. И та и другая теории объясняли основные оптические закономерности: прямолинейность распространения, законы отражения и преломления. Дальнейшие попытки более полного объяснения наблюдаемых фактов приводили к затруднению в обеих теориях.

Гюйгенс не смог объяснить физической причины наличия различных цветов и механизм изменения скорости распространения света в эфире, пронизывающем различные среды.

Ньютону трудно было объяснить, почему при падении на границу двух сред происходит частичное и отражение, и преломление, а также интерференцию и дисперсию света. Однако огромный авторитет Ньютона и незавершенность волновой теории привели к тому, что весь XVIII в. прошел под знаком корпускулярной теории.

Начало XIX в. характеризуется интенсивным развитием математической теории колебаний и волн и ее приложением к объяснению ряда оптических явлений. В связи с работами Т. Юнга и О. Френеля победа временно перешла к волновой оптике .

· 1801 г. Т. Юнг формулирует принцип интерференции и объяснет цвета тонких пленок.

· 1818 г. О. Френель объясняет явление дифракции.

· 1840 г. О. Френель и Д. Арго исследуют интерференцию поляризованного света и доказывают поперечность световых колебаний.

· 1841 г. О. Френель строит теорию кристаллооптических колебаний.

· 1849 г. А. Физо измерил скорость света и рассчитал по волновой теории коэффициент преломления воды , что совпало с экспериментом.

· 1848 г. М. Фарадей открыл вращение плоскости поляризации света в магнитном поле (эффект Фарадея).

· 1860 г. Дж. Максвелл, основываясь на открытии Фарадея, пришел к выводу, что свет есть электромагнитные волны, а не упругие.

· 1888 г. Г. Герц экспериментально подтвердил, что электромагнитное поле распространяется со скоростью света с .

· 1899 г. П.Н. Лебедев измерил давление света.

Казалось, что спор полностью решен в пользу волновой теории света, так как в середине XIX в. были обнаружены факты, указывающие на связь и аналогию оптических и электрических явлений. Фарадеем, Максвеллом и другими учеными было показано, что свет – частный случай электромагнитной волны с . Только этот интервал длин волн оказывает воздействие на наш глаз и является собственно светом. Но и более длинные и более короткие волны имеют одну и ту же природу, что и свет.

Однако, несмотря на огромные успехи в электромагнитной теории света, к концу XIX в. начали накапливаться новые факты, противоречащие волновой теории света. Волновая теория не смогла объяснить распределение энергии в спектре излучения абсолютно черного тела и явление фотоэффекта, которое в 1890 г. исследовал А.Г. Столетов.

В 1900 г. Макс Планк показал, что излучение абсолютно черного тела можно объяснить, если предложить, что свет излучается не непрерывно, а порциями, квантами с энергией , где ν – частота, h – постоянная Планка.

Макс Планк (1858–1947). С 1874 г. он изучал физику у Густава Кирхгофа и Германа Гельмгольца в Мюнхенском университете. В 1930 г. Макс Планк возглавил Институт физики Кайзера Вильгельма (теперь Институт Макса Планка) и занимал этот пост до конца жизни. В 1900 г. в работе, посвященной равновесному тепловому излучению, Планк впервые ввел предположение о том, что энергия осциллятора принимает дискретные значения, пропорциональные частоте колебаний, чем положил начало квантовой физики. Также Макс Планк внес большой вклад в развитие термодинамики.

В 1905 г. Альберт Эйнштейн объяснил закономерности фотоэффекта на основе представления о световых частицах – «квантах » света, «фотонах », масса которых

.

Это соотношение связывает корпускулярные характеристики излучения , массу и энергию кванта , с волновыми – частотой и длиной волны .

Работы Планка и Эйнштейна явились началом развития квантовой физики .

Итак, обе теории – и волновая, и квантовая – одновременно развивались, имея свои несомненные достоинства и недостатки, и как бы дополняли друг друга. Ученые уже начали приходить к мнению, что свет является одновременно и волнами, и корпускулами. И вот в 1922 г. А. Комптон окончательно доказал, что рентгеновские электромагнитные волны – одновременно и корпускулы (фотоны, кванты), и волны.

Таким образом, длительный путь исследований привел к современным представлениям о двойственной корпускулярно-волновой природе света.

Интерес к оптическим явлениям понятен. Около 80 % информации об окружающем мире человек получает через зрение. Оптические явления всегда наглядны и поддаются количественному анализу. Очень многие основополагающие понятия, такие как интерференция, дифракция, поляризация и др., в настоящее время широко используются в областях, далеких от оптики, благодаря их предметной наглядности и точности теоретических представлений.

Примерно до середины XX столетия казалось, что оптика, как наука, закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях.

Наиболее важное событие в современной оптике – экспериментальное обнаружение методов генерации вынужденного излучения атомов и молекул – создание оптического квантового генератора (лазера) (А.М. Прохоров, Н.Г. Басов и Ч. Таунс, 1954 г.).

В современной физической оптике квантовые представления не противоречат волновым, а сочетаются на основе квантовой механики и квантовой электродинамики.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама