THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

11.1. Механические колебания – движение тел или частиц тел, обладающее той или иной степенью повторяемости во времени. Основные характеристики: амплитуда колебаний и период (частота).

11.2. Источники механических колебаний – неуравновешенные силы со стороны различных тел или частей тел.

11.3. Амплитуда механических колебаний – наибольшее смещение тела от положения равновесия. Единица амплитуды – 1 метр (1 м).

11.4. Период колебаний – время, за которое колеблющееся тело совершит одно полное колебание (вперёд и назад, дважды проходя через положение равновесия). Единица периода – 1 секунда (1 с).

11.5. Частота колебаний физическая величина, обратная периоду. Единица – 1 герц (1 Гц = 1/с). Характеризует количество колебаний, совершаемых телом или частицей за единицу времени.

11.6. Нитяной маятник – физическая модель, в которую включают невесомую нерастяжимую нить и тело, размеры которого пренебрежимо малы по сравнению с длиной нити, находящиеся в силовом поле, как правило, гравитационном поле Земли или другого небесного тела.

11.7. Период малых колебаний нитяного маятника пропорционален квадратному корню из длины нити и обратно пропорционален квадратному корню из коэффициента силы тяжести.

11.8. Пружинный маятник – физическая модель, в которую включают невесомую пружину и прикреплённое к ней тело. Наличие гравитационного поля не является обязательным; такой маятник может колебаться как по вертикали, так и вдоль любого другого направления.

11.9. Период малых колебаний пружинного маятника прямо пропорционален квадратному корню из массы тела и обратно пропорционален квадратному корню из коэффициента жёсткости пружины.

11.10. По отношению к колеблющимся телам выделяют свободные, незатухающие, затухающие, вынужденные колебания и автоколебания.

11.11. Механическая волна – явление распространения механических колебаний в пространстве (в упругой среде) с течением времени. Волна характеризуется скоростью переноса энергии и длиной волны.

11.12. Длина волны – расстояние между ближайшими частицами волны, находящимися в одинаковом состоянии. Единица – 1 метр (1 м).

11.13. Скорость волны определяется как отношение длины волны к периоду колебаний её частиц. Единица – 1 метр в секунду (1 м/с).

11.14. Свойства механических волн: отражение, преломление и дифракция на границе раздела двух сред с различными механическими свойствами, а также интерференция двух и большего количества волн.

11.15. Звуковые волны (звук) – это механические колебания частиц упругой среды с частотами в диапазоне 16 Гц – 20 кГц. Частота звука, излучаемого телом, зависит от упругости (жёсткости) и размеров тела.

11.16. Электромагнитные колебания – собирательное понятие, включающее в зависимости от ситуации изменение заряда, силы тока, напряжения, интенсивности электрического и магнитного поля.

11.17. Источники электромагнитных колебаний – индукционные генераторы, колебательные контуры, молекулы, атомы, ядра атомов (то есть все объекты, где есть движущиеся заряды).

11.18. Колебательный контур электрическая цепь, состоящая из конденсатора и катушки индуктивности. Контур предназначен для генерирования переменного электрического тока высокой частоты.

11.19. Амплитуда электромагнитных колебаний – наибольшее изменение наблюдаемой физической величины, характеризующей процессы в колебательном контуре и пространстве вокруг него.

11.20. Период электромагнитных колебаний – наименьшее время, за которое происходит возврат значений всех величин, характеризующих электромагнитные колебания в контуре и пространстве вокруг него, к прежним значениям. Единица периода – 1 секунда (1 с).

11.21. Частота электромагнитных колебаний – физическая величина, обратная периоду. Единица – 1 герц (1 Гц = 1/с). Характеризует количество колебаний величин за единицу времени.

11.22. По аналогии с механическими колебаниями, по отношению к электромагнитным колебаниям выделяют свободные, незатухающие, затухающие, вынужденные колебания и автоколебания.

11.23. Электромагнитное поле – совокупность распространяющихся в пространстве постоянно изменяющихся и переходящих друг в друга электрического и магнитного полей – электромагнитная волна. Скорость в вакууме и воздухе 300 000 км/с.

11.24. Длина электромагнитной волны определяется как расстояние, на которое распространятся колебания за время одного периода. По аналогии с механическими колебаниями может быть вычислена произведением скорости волны на период электромагнитных колебаний.

11.25. Антенна – открытый колебательный контур, служащий для испускания или приёма электромагнитных (радио)волн. Длина антенны должна быть тем больше, чем больше длина волны.

11.26. Свойства электромагнитных волн: отражение, преломление и дифракция на границе раздела двух сред с различными электрическими свойствами и интерференция двух и большего количества волн.

11.27. Принципы радиопередачи: наличие высокочастотного генератора несущей частоты, амплитудного или частотного модулятора, передающей антенны. Принципы радиоприема: наличие приемной антенны, настроечного контура, демодулятора.

11.28. Принципы телевидения совпадают с принципами радиосвязи с дополнением двумя следующими: электронное сканирование с частотой порядка 25 Гц экрана, на котором находится передаваемое изображение и синхронная поэлементная передача видеосигнала на видеомонитор.

Механическими (или упругими) волнами называют механические возмущения (деформации), распространяющиеся в упругой среде. Тела, которые, воздействуя на упругую среду, вызывают эти возмущения, называют источниками упругих волн.
Среду называют упругой, а деформации, вызываемые внешними воздействиями, называют упругими деформациями, если они полностью исчезают после прекращения этих воздействий. При достаточно малых деформациях все твёрдые тела практически можно считать упругими.
Газу присуща объёмная упругость, т.е. способность сопротивляться изменению его объёма.
По закону Гука для объёмной деформации
, где
– изменение давления газа при малом изменении его объёма;
– модуль объёмной упругости газа.
Для идеального газа значение зависит от вида термодинамического процесса. При очень медленном изменении объёма газа процесс можно считать изотермическим, а при очень быстром – адиабатным.
В первом случае pV = const и после дифференцирования получаем.
Во втором случае pV γ = const и

Жидкости и газы обладают только объёмной упругостью.

Твёрдые тела помимо объёмной упругости обладают упругостью формы, которая проявляется в их сопротивлению деформации сдвига.

В отличие от других видов механического движения среды (например, её течения) распространение упругих волн в среде не связано с переносом вещества.

Упругую волну называют продольной, если частицы среды колеблются в направлении распространения волны. Продольные волны связаны с объёмной деформацией среды и поэтому могут распространяться в любой среде – твёрдой, жидкой и газообразной. Примером таких волн являются звуковые (акустические) волны.
Слышимый звук – 16 Гц < ν < 20 кГц
Инфразвук – ν <16 Гц
Ультразвук – ν > 20 кГц
Гиперзвук – ν >1 ГГц.
Упругую волну называют поперечной, если частицы среды колеблются, оставаясь в плоскостях, перпендикулярных направлению распространения волны. Поперечные волны связаны с деформацией сдвига упругой среды и, следовательно, могут распространяться только в твёрдых телах. Например, волны, распространяющиеся вдоль струн музыкальных инструментов.
Поверхностные волны – волны, распространяющиеся вдоль свободной поверхности жидкости (или поверхности раздела двух несмешивающихся жидкостей).
Уравнением упругой волны называют зависимость от координат и времени скалярных или векторных величин, характеризующих колебания среды при прохождении в ней рассматриваемой волны.
Для волн в твёрдом теле такой величиной может служить вектор смещения частицы среды из положения равновесия или три его проекции на оси координат. В газе или жидкости обычно пользуются избыточным давлением колеблющейся среды.
Линию, касательная к которой в каждой её точке совпадает с направлением распространения волны, т.е. с направлением переноса энергии волной, называют лучом. В однородной среде лучи имеют вид прямых линий.
Упругую волну называют гармонической, если соответствующие ей колебания частиц являются гармоническими. Частоту этих колебаний называют частотой волны.
Волновой поверхностью или фронтом волны называют геометрическое место точек, в которых фаза колебаний имеет одно и то же значение. В однородной изотропной среде волновые поверхности ортогональны лучам.
Волну называют плоской, если её волновые поверхности представляют совокупность плоскостей, параллельных друг другу.
В плоской волне, распространяющейся вдоль оси ОХ, все величины ξ , характеризующие колебательное движение среды, зависят только от времени t и координаты х точки М среды. Если нет поглощения волн в среде, то колебания в т.М отличаются от колебаний в начале координат О, происходящих по закону, только тем, что они сдвинуты по времени на х/υ , где υ – фазовая скорость волны.
Фазовой скоростью волны называют скорость перемещения в пространстве точек поверхности, соответствующей любому фиксированному значению фазы.
Для поперечных волн
а) вдоль натянутой струны, где
F – сила натяжения струны;
ρ – плотность материала струны;
S – площадь поперечного сечения струны.

Б) в изотропном твёрдом теле, где
G – модуль сдвига среды;
ρ – плотность среды.

Для продольных волн
а) в тонком стержне, где
Е – модуль Юнга материала стержня;
ρ – плотность материала стержня.

Б) в жидкости и газе, где
χ – модуль объёмной упругости среды;
ρ – плотность невозмущённой среды.

В) в идеальном газе, где
γ – показатель адиабаты газа;
М – молярная масса газа;
Т – температура газа.

Для плоской гармонической волны, распространяющейся в не- поглощающей среде вдоль положительного направления оси ОХ, уравнение упругой волны имеет вид
или

Расстояние λ = υ.Т, на которое распространяется гармоническая волна за время, равное периоду колебаний, называют длиной волны (расстояние между двумя ближайшими точками среда, в которых разность фаз колебаний равна 2π .
Ещё одной характеристикой гармонической волны является волновое число k, которое показывает, сколько длин волн укладывается на отрезке длиной 2π:
, тогда

.
Волновым вектором называют вектор, по модулю равный волновому числу k и направленный вдоль луча в рассматриваемой точке М среды.
Для плоской волны, распространяющейся вдоль ОХ, поэтому, где – радиус вектор т.М.
Таким образом
.

Уравнение волны можно также записать, используя формулу Эйлера для комплексных чисел, в экспоненциальной форме, удобной для дифференцирования
, где.
Физический смысл имеет только действительная часть комплексной величины, т.е. . Пользуясь для нахождения какой-либо характеристики волны, нужно после выполнения всех математических операций отбросить мнимую часть полученного комплексного выражения.

Волну называютсферической, если её волновые поверхности имеют вид концентрических сфер. Центр этих сфер называется центром волны.
Уравнение расходящейся сферической волны
, где
r – расстояние от центра волны до т.М.
Для гармонической сферической волны
и,

Где A(r) – амплитуда волны; φо – начальная фаза колебаний в центре волны.
Реальные источники волн можно считать точечными (источниками сферических волн), если расстояние r от источника колебаний до рассматриваемых точек среды значительно больше размера источника.
Если r очень велико, то любые малые участки волновых поверхностей можно считать плоскими.

В однородной, изотропной, непоглощающей среде волны плоские и сферические описываются дифференциальным уравнением в частных производных, которое называют волновым уравнением.
, где
– оператор Лапласа или Лапласиан.

Цель урока : формировать представления о процессе распространения механических волн; ввести физические характеристики волн: длину, скорость.

Ход урока

Проверка домашнего задания методом фронтального опроса

1. Как образуются волны? Что такое волна?

2. Какие волны называются поперечными? Привести примеры.

3. Какие волны называются продольными? Привести примеры.

4. Как движение волны связано с переносом энергии?

Изучение нового материала

1. Рассмотрим, как распространяется поперечная волна вдоль резинового шнура.

2. Поделим шнур на участки, каждый из которых имеет свою массу и упругость. Когда начинается деформация силу упругости можно обнаружить в любом сечении шнура.

Сила упругости стремится к исходному положению шнура. Но так как каждый участок имеет инертность, то колебания не прекращается в положении равновесия, а продолжает движение, пока силы упругости не остановят данный участок.

На рисунке мы видим положения шаров в определенные моменты времени, которые отстоят друг от друга на четверть периода колебаний. Векторы скоростей движения участков, в соответствующие моменты времени показаны стрелками

3. Вместо резинового шнура можно взять цепочку из металлических шаров, подвешенных на нитях. В такой модели упругие свойства и инертные разделены: масса сосредоточена в шарах, а упругость в пружинах. П

4. На рисунке видны продольные волны, распространяющиеся в пространстве в виде сгущения и разряжения частиц.

5. Длина волны и ее скорость – это физические характеристики волнового процесса.

За один период волна распространяется на расстояние, которое будем обозначать – λ –это длина волны.

Расстояние между 2-мя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны.

6. Скорость волны равна произведению длины волны на частоту колебаний.

7. Ѵ = λ/T; так как Т= 1/ν, то Ѵ=λ·ν

8. Периодичность двоякого рода можно наблюдать при распространении волны по шнуру.

Во – первых, колебания совершает каждая частица в шнуре. Если колебания гармонические, то частота и амплитуда одинаковы во всех точках и колебания будут отличаться только фазами.

Во – вторых, форма волны повторяется, через отрезки, длина которых равна – λ.

На рисунке представлен профиль волны в данный момент времени. С течением времени вся эта картина перемещается со скоростью Ѵ слева направо. Через время Δt волна будет иметь вид, изображенный на этом же рисунке. Формула Ѵ= λ·ν – справедлива и для продольных, и для поперечных волн.

Закрепление изученного материала

Задача № 435

Дано: Ѵ= λ/T; T= λ/Ѵ T= 3/6 = 0,5 c

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама