THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Цель работы . Ознакомиться с основными характеристиками незатухающих и затухающих свободных механических колебаний.

Задача . Определить период собственных колебаний пружинного маятника; проверить линейность зависимости квадрата периода от массы; определить жесткость пружины; определить период затухающих колебаний и логарифмический декремент затухания пружинного маятника.

Приборы и принадлежности . Штатив со шкалой, пружина, набор грузов различной массы, сосуд с водой, секундомер.

1. Свободные колебания пружинного маятника. Общие сведения

Колебаниями называются процессы, в которых периодически изменяется одна или несколько физических величин, описывающих эти процессы. Колебания могут быть описаны различными периодическими функциями времени. Простейшими колебаниями являются гармонические колебания – такие колебания, при которых колеблющаяся величина (например, смещение груза на пружине) изменяется со временем по закону косинуса или синуса. Колебания, возникающие после действия на систему внешней кратковременной силы, называются свободными.

Если груз вывести из положения равновесия, отклонив на величину x , то сила упругости возрастает: F упр = – kx 2= – k (x 1 + x ). Дойдя до положения равновесия, груз будет обладать отличной от нуля скоростью и пройдет положение равновесия по инерции. По мере дальнейшего движения будет увеличиваться отклонение от положения равновесия, что приведет к возрастанию силы упругости, и процесс повторится в обратном направлении. Таким образом, колебательное движение системы обусловлено двумя причинами: 1) стремлением тела вернуться в положении равновесия и 2) инерцией, не позволяющей телу мгновенно остановиться в положении равновесия. В отсутствии сил трения колебания продолжались бы сколь угодно долго. Наличие силы трения приводит к тому, что часть энергии колебаний переходит во внутреннюю энергию и колебания постепенно затухают. Такие колебания называются затухающими.

Незатухающие свободные колебания

Сначала рассмотрим колебания пружинного маятника, на который не действуют силы трения – незатухающие свободные колебания. Согласно второму закону Ньютона c учетом знаков проекций на ось X

Из условия равновесия смещение, вызываемое силой тяжести: . Подставляя в уравнение (1), получим: Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциальное уравнение

https://pandia.ru/text/77/494/images/image008_28.gif" width="152" height="25 src=">. (3)

Данное уравнение называется уравнением гармонических колебаний . Наибольшее отклонение груза от положения равновесия А 0 называется амплитудой колебаний . Величина , стоящая в аргументе косинуса, называется фазой колебания . Постоянная φ0 представляет собой значение фазы в начальный момент времени (t = 0) и называется начальной фазой колебаний . Величина

есть круговая или циклическая частота собственных колебаний , связанная с периодом колебаний Т соотношением https://pandia.ru/text/77/494/images/image012_17.gif" width="125" height="55">. (5)

Затухающие колебания

Рассмотрим свободные колебания пружинного маятника при наличии силы трения (затухающие колебания). В простейшем и вместе с тем наиболее часто встречающемся случае сила трения пропорциональна скорости υ движения:

F тр = – , (6)

где r – постоянная, называемая коэффициентом сопротивления. Знак минус показывает, что сила трения и скорость имеют противоположные направления. Уравнение второго закона Ньютона в проекции на ось Х при наличии упругой силы и силы трения

ma = – kx . (7)

Данное дифференциальное уравнение с учетом υ = dx / dt можно записать

https://pandia.ru/text/77/494/images/image014_12.gif" width="59" height="48 src="> – коэффициент затухания ; – циклическая частота свободных незатухающих колебаний данной колебательной системы, т. е. при отсутствии потерь энергии (β = 0). Уравнение (8) называют дифференциальным уравнением затухающих колебаний .

Чтобы получить зависимость смещения x от времени t , необходимо решить дифференциальное уравнение (8)..gif" width="172" height="27">, (9)

где А 0 и φ0 – начальная амплитуда и начальная фаза колебаний;
– циклическая частота затухающих колебаний при ω >> https://pandia.ru/text/77/494/images/image019_12.gif" width="96" height="27 src=">. (10)

На графике функции (9), рис. 2, пунктирными линиями показано изменение амплитуды (10) затухающих колебаний.

Рис. 2. Зависимость смещения х груза от времени t при наличии силы трения

Для количественной характеристики степени затухания колебаний вводят величину, равную отношению амплитуд, отличающихся на период, и называемую декрементом затухания :

. (11)

Часто используют натуральный логарифм этой величины. Такой параметр называется логарифмическим декрементом затухания :

Амплитуда уменьшается в n раз, то из уравнения (10) следует, что

Отсюда для логарифмического декремента получаем выражение

Если за время t " амплитуда уменьшается в е раз (е = 2,71 – основание натурального логарифма), то система успеет совершить число колебаний

Рис. 3. Схема установки

Установка состоит из штатива 1 с измерительной шкалой 2 . К штативу на пружине 3 подвешиваются грузы 4 различной массы. При изучении затухающих колебаний в задании 2 для усиления затухания используется кольцо 5 , которое помещается в прозрачный сосуд 6 с водой.

В задании 1 (выполняется без сосуда с водой и кольца) в первом приближении затуханием колебаний можно пренебречь и считать гармоническими. Как следует из формулы (5) для гармонических колебаний зависимость T 2 = f (m ) – линейная, из которой можно определить коэффициент жесткости пружины k по формуле

где – угловой коэффициент наклона прямой T 2 от m .

Задание 1. Определение зависимости периода собственных колебаний пружинного маятника от массы груза.

1. Определить период колебаний пружинного маятника при различных значениях массы груза m . Для этого с помощью секундомера для каждого значения m трижды измерить время t полных n колебаний (n ≥10) и по среднему значению времени https://pandia.ru/text/77/494/images/image030_6.gif" width="57 height=28" height="28">. Результаты занести в табл. 1.

2. По результатам измерений построить график зависимости квадрата периода T 2 от массы m . Из углового коэффициента графика определить жесткость пружины k по формуле (16).

Таблица 1

Результаты измерений для определения периода собственных колебаний

3. Дополнительное задание. Оценить случайную , полную и относительную εt ошибки измерения времени для значения массы m = 400 г.

Задание 2. Определение логарифмического декремента затухания пружинного маятника.

1. На пружину подвесить груз массой m = 400 г с кольцом и поместить в сосуд с водой, так чтобы кольцо полностью находилось в воде. Определить период затухающих колебаний для данного значения m по методу, изложенному в п. 1 задания 1. Измерения повторить три раза и результаты занести в левую часть табл. 2.

2. Вывести маятник из положения равновесия и, отметив по линейке его начальную амплитуду, измерить время t " , в течение которого амплитуда колебаний уменьшается в 2 раза. Измерения произвести три раза. Результаты занести в правую часть табл. 2.

Таблица 2

Результаты измерений

для определения логарифмического декремента затухания

Измерение периода колебаний

Измерение времени

уменьшения амплитуды в 2 раза

4. Контрольные вопросы и задания

1. Какие колебания называются гармоническими? Дайте определение их основных характеристик.

2. Какие колебания называются затухающими? Дайте определение их основных характеристик.

3. Поясните физический смысл логарифмического декремента затухания и коэффициента затухания.

4. Вывести зависимости от времени скорости и ускорения груза на пружине, совершающего гармонические колебания. Привести графики и проанализировать.

5. Вывести зависимости от времени кинетической, потенциальной и полной энергии для груза, колеблющегося на пружине. Привести графики и проанализировать.

6. Получить дифференциальное уравнение свободных колебаний и его решение.

7. Построить графики гармонических колебаний с начальными фазами π/2 и π/3.

8. В каких пределах может изменяться логарифмический декремент затухания?

9. Привести дифференциальное уравнение затухающих колебаний пружинного маятника и его решение.

10. По какому закону изменяется амплитуда затухающих колебаний? Являются ли затухающие колебания периодическими?

11. Какое движение называется апериодическим? При каких условиях оно наблюдается?

12. Что называется собственной частотой колебаний? Как она зависит от массы колеблющегося тела для пружинного маятника?

13. Почему частота затухающих колебаний меньше частоты собственных колебаний системы?

14. Подвешенный к пружине медный шарик совершает вертикальные колебания. Как изменится период колебаний, если к пружине подвесить вместо медного шарика алюминиевый того же радиуса?

15. При каком значении логарифмического декремента затухания колебания затухают быстрее: при θ1 = 0,25 или θ2 = 0,5? Привести графики этих затухающих колебаний.

Библиографический список

1. И . Курс физики / . – 11-е изд. – М. : Академия, 2006. – 560 с.

2. В . Курс общей физики: в 3 т. / . – СПб. : Лань, 2008. – Т. 1. – 432 с.

3. С . Лабораторный практикум по физике / .
– М. : Высш. шк., 1980. – 359 с.

Что такое период колебаний? Что это за величина, какой физический смысл она имеет и как ее рассчитать? В этой статье мы разберемся с этими вопросами, рассмотрим различные формулы, по которым можно рассчитать период колебаний, а также выясним, какая связь имеется между такими физическими величинами, как период и частота колебаний тела/системы.

Определение и физический смысл

Периодом колебаний называется такой промежуток времени, при котором тело или система совершают одно колебание (обязательно полное). Параллельно можно отметить параметр, при выполнении которого колебание может считаться полным. В роли такого условия выступает возвращение тела в его первоначальное состояние (к первоначальной координате). Очень хорошо проводится аналогия с периодом функции. Ошибочно, кстати, думать, что она имеет место исключительно в обыкновенной и высшей математике. Как известно, эти две науки неразрывно связаны. И с периодом функций можно столкнуться не только при решении тригонометрических уравнений, но и в различных разделах физики, а именно речь идет о механике, оптике и прочих. При переносе периода колебаний из математики в физику под ним нужно понимать просто физическую величину (а не функцию), которая имеет прямую зависимость от проходящего времени.

Какие бывают колебания?

Колебания подразделяются на гармонические и ангармонические, а также на периодические и непериодические. Логично было бы предположить, что в случае гармонических колебаний они совершаются согласно некоторой гармонической функции. Это может быть как синус, так и косинус. При этом в деле могут оказаться и коэффициенты сжатия-растяжения и увеличения-уменьшения. Также колебания бывают затухающими. То есть, когда на систему действует определенная сила, которая постепенно “тормозит” сами колебания. При этом период становится меньше, в то время как частота колебаний неизменно увеличивается. Очень хорошо демонстрирует такую вот физическую аксиому простейший опыт с использованием маятника. Он может быть пружинного вида, а также математического. Это неважно. Кстати, период колебаний в таких системах будет определяться разными формулами. Но об этом чуточку позже. Сейчас же приведем примеры.

Опыт с маятниками

Взять первым можно любой маятник, разницы никакой не будет. Законы физики на то и законы физики, что они соблюдаются в любом случае. Но почему-то больше по душе математический маятник. Если кто-то не знает, что он собой представляет: это шарик на нерастяжимой нити, который крепится к горизонтальной планке, прикрепленной к ножкам (или элементам, которые играют их роль - держать систему в равновесном состоянии). Шарик лучше всего брать из металла, чтобы опыт был нагляднее.

Итак, если вывести такую систему из равновесия, приложить к шару какую-то силу (проще говоря, толкнуть его), то шарик начнет раскачиваться на нити, следуя определенной траектории. Со временем можно заметить, что траектория, по которой проходит шар, сокращается. В то же время шарик начинает все быстрее сновать туда-сюда. Это говорит о том, что частота колебаний увеличивается. А вот время, за которое шарик возвращается в начальное положение, уменьшается. А ведь время одного полного колебания, как мы выяснили ранее, и называется периодом. Если одна величина уменьшается, а другая увеличивается, то говорят об обратной пропорциональности. Вот мы и добрались до первого момента, на основании которого строятся формулы для определения периода колебаний. Если же мы возьмем для проведения пружинный маятник, то там закон будет наблюдаться немного в другом виде. Для того чтобы он был наиболее наглядно представлен, приведем систему в движение в вертикальной плоскости. Чтобы было понятнее, сначала стоило сказать, что собой представляет пружинный маятник. Из названия понятно, что в его конструкции должна присутствовать пружина. И это действительно так. Опять же таки, у нас есть горизонтальная плоскость на опорах, к которой подвешивается пружина определенной длины и жесткости. К ней, в свою очередь, подвешивается грузик. Это может быть цилиндр, куб или другая фигурка. Это может быть даже какой-то сторонний предмет. В любом случае, при выведении системы из положения равновесия, она начнет совершать затухающие колебания. Наиболее четко просматривается увеличение частоты именно в вертикальной плоскости, без всякого отклонения. На этом с опытами можно закончить.

Итак, в их ходе мы выяснили, что период и частота колебаний это две физические величины, которые имеют обратную зависимость.

Обозначение величин и размерности

Обычно период колебаний обозначается латинской буквой T. Гораздо реже он может обозначаться по-другому. Частота же обозначается буквой µ (“Мю”). Как мы говорили в самом начале, период это не что иное, как время, за которое в системе происходит полное колебание. Тогда размерностью периода будет секунда. А так как период и частота обратно пропорциональны, то размерностью частоты будет единица, деленная на секунду. В записи задач все будет выглядеть таким образом: T (с), µ (1/с).

Формула для математического маятника. Задача №1

Как и в случае с опытами, я решил первым делом разобраться с маятником математическим. Подробно вдаваться в вывод формулы мы не будем, поскольку такая задача поставлена изначально не была. Да и вывод сам по себе громоздкий. Но вот с самими формулами ознакомимся, выясним, что за величины в них входят. Итак, формула периода колебаний для математического маятника имеет следующий вид:

Где l - длина нити, п = 3,14, а g - ускорение свободного падения (9,8 м/с^2). Никаких затруднений формула вызывать не должна. Поэтому без дополнительных вопросов перейдем сразу к решению задачи на определение периода колебания математического маятника. Металлический шар массой 10 грамм подвешен на нерастяжимой нити длиной 20 сантиметров. Рассчитайте период колебания системы, приняв ее за математический маятник. Решение очень простое. Как и во всех задачах по физике, необходимо максимально упростить ее за счет отброса ненужных слов. Они включаются в контекст для того чтобы запутать решающего, но на самом деле никакого веса абсолютно не имеют. В большинстве случаев, разумеется. Здесь можно исключить момент с “нерастяжимой нитью”. Это словосочетание не должно вводить в ступор. А так как маятник у нас математический, масса груза нас интересовать не должна. То есть слова о 10 граммах тоже просто призваны запутать ученика. Но мы ведь знаем, что в формуле масса отсутствует, поэтому со спокойной совестью можем приступать к решению. Итак, берем формулу и просто подставляем в нее величины, поскольку определить необходимо период системы. Поскольку дополнительных условий не было задано, округлять значения будем до 3-его знака после запятой, как и принято. Перемножив и поделив величины, получим, что период колебаний равен 0,886 секунд. Задача решена.

Формула для пружинного маятника. Задача №2

Формулы маятников имеют общую часть, а именно 2п. Эта величина присутствует сразу в двух формулах, но разнятся они подкоренным выражением. Если в задаче, касающейся периода пружинного маятника, указана масса груза, то избежать вычислений с ее применение невозможно, как это было в случае с математическим маятником. Но пугаться не стоит. Вот так выглядит формула периода для пружинного маятника:

В ней m - масса подвешенного к пружине груза, k - коэффициент жесткости пружины. В задаче значение коэффициента может быть приведено. Но если в формуле математического маятника особо не разгуляешься - все-таки 2 величины из 4 являются константами - то тут добавляется 3 параметр, который может изменяться. И на выходе мы имеем 3 переменных: период (частота) колебаний, коэффициент жесткости пружины, масса подвешенного груза. Задача может быть сориентирована на нахождение любого из этих параметров. Вновь искать период было бы слишком легко, поэтому мы немного изменим условие. Найдите коэффициент жесткости пружины, если время полного колебания составляет 4 секунды, а масса груза пружинного маятника равна 200 граммам.

Для решения любой физической задачи хорошо бы сначала сделать рисунок и написать формулы. Они здесь - половина дела. Записав формулу, необходимо выразить коэффициент жесткости. Он у нас находится под корнем, поэтому обе части уравнения возведем в квадрат. Чтобы избавиться от дроби, умножим части на k. Теперь оставим в левой части уравнения только коэффициент, то есть разделим части на T^2. В принципе, задачку можно было бы еще немного усложнить, задав не период в числах, а частоту. В любом случае, при подсчетах и округлениях (мы условились округлять до 3-его знака после запятой), получится, что k = 0, 157 Н/м.

Период свободных колебаний. Формула периода свободных колебаний

Под формулой периода свободных колебаний понимают те формулы, которые мы разобрали в двух ранее приведенных задачах. Составляют также уравнение свободных колебаний, но там речь идет уже о смещениях и координатах, а этот вопрос относится уже к другой статье.

1) Прежде чем браться за задачу, запишите формулу, которая с ней связана.

2) Простейшие задачи не требуют рисунков, но в исключительных случаях их нужно будет сделать.

3) Старайтесь избавляться от корней и знаменателей, если это возможно. Записанное в строчку уравнение, не имеющее знаменателя, решать гораздо удобнее и проще.

где k – коэффициент упругости тела, m - масса груза

Математическим маятником называется система, состоящая из материальной точки массой m, подвешенной на невесомой нерастяжимой нити, совершающей колебания под действием силы тяжести (рис.5.13,б).

Период колебаний математического маятника

где l – длина математического маятника, g – ускорение свободного падения.

Физическим маятником называется твердое тело, которое совершает колебания под действием силы тяжести вокруг горизонтальной оси подвеса, не проходящей через центр масс тела (рис.5.13,в).

,

где J – момент инерции колеблющегося тела относительно оси колебаний; d – расстояние центра масс маятника от оси колебаний; - приведенная длина физического маятника.

При сложении двух одинаково направленных гармонических колебаний одинакового периода получается гармоническое колебание того же периода с амплитудой

Результирующая начальная фаза , получаемая при сложении двух колебаний, :

, (5.50)

где A 1 и A 2 – амплитуды слагаемых колебаний, φ 1 и φ 2 – их начальные фазы.

При сложении двух взаимно перпендикулярных колебаний одинакового периода уравнение траектории результирующего движения имеет вид:

Если на материальную точку, кроме упругой силы действует сила трения, то колебания будут затухающими, и уравнение такого колебания будет иметь вид

, (5.52)

где называется коэффициентом затухания (r – коэффициент сопротивления).

Называется отношение двух амплитуд, отстоящих друг от друга по времени, равным периоду


Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины периодически меняются и сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур – цепь, состоящая из включенных последовательно катушки индуктивности L, конденсатора емкостью C и резистора сопротивлением R (рис.5.14).

Период T электромагнитных колебаний в колебательном контуре

. (5.54)

Если сопротивление колебательного контура мало, т.е. <<1/LC, то период колебаний колебательного контура определяется формулой Томсона

Если сопротивление контура R не равно нулю, то колебания будут затухающими . При этом разность потенциалов на обкладках конденсатора меняется со временем по закону

, (5.56)

где δ – коэффициент затухания, U 0 – амплитудное значение напряжения.

Коэффициент затухания колебаний в колебательном контуре

где L – индуктивность контура, R – сопротивление.

Логарифмическим декрементом затухания называется отношение двух амплитуд, отстоящих друг от друга по времени, равное периоду


Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы ω к частоте, равной или близкой собственной частоте ω 0 колебательной системы (рис.5.15.).

Условие получения резонанса :

. (5.59)

Промежуток времени, в течение которого амплитуда затухающих колебаний уменьшится в e раз, называется временем релаксации

Для характеристики затухания колебательных контуров часто пользуются величиной, называемой добротностью контура. Добротностью контура Q называется число полных колебаний N, умноженное на число π, по истечению которых амплитуда уменьшается в e раз

. (5.61)

Если коэффициент затухания равен нулю, то колебания будут незатухающими, напряжение будет меняться по закону

. (5.62)

В случае постоянного тока отношение напряжения к силе тока называют сопротивлением проводника. Подобно этому при переменном токе отношение амплитуды активной составляющей напряжения U а к амплитуде тока i 0 называется активным сопротивлением цепи X

В рассматриваемой цепи оно равно сопротивлению постоянного тока. Активное сопротивление всегда приводит к выделению тепла.

Отношение

. (5.64)

называетсяреактивным сопротивлением цепи .

Наличие реактивного сопротивления в цепи не сопровождается выделением тепла.

Полным сопротивлением называется геометрическая сумма активного и реактивного сопротивления

, (5.65)

Емкостным сопротивлением цепи переменного тока X c называется соотношение

Индуктивное сопротивление

Закон Ома для переменного тока записывается в виде

где I эф и U эф – эффективные значения силы тока и напряжения , связанные с их амплитудными значениями I 0 и U 0 соотношениями

Если цепь содержит активное сопротивление R, емкость C и индуктивность L, соединенные последовательно, тоcдвиг фаз между напряжением и силой тока определяется формулой

. (5.70)

Если активное сопротивление R и индуктивность включены параллельно в цепь переменного тока, то полное сопротивление цепи определяется формулой

, (5.71)

и сдвиг фаз между напряжением и током определяется следующим соотношением

, (5.72)

где υ – частота колебаний.

Мощность переменного тока определяется следующим соотношением

. (5.73)

Длина волны связана с периодом следующим соотношением

где c=3·10 8 м/с – скорость распространения звука.


Примеры решения задач

Задача 5.1. По отрезку прямого провода длиной l = 80 см течет ток I = 50 А. Определить магнитную индукцию B поля, создаваемого этим током, в точке А, равноудаленной от концов отрезка провода и находящейся на расстоянии r 0 = 30 см от его середины.

где dB – магнитная индукция, создаваемая элементом провода длиной dl с током I в точке, определяемой радиус-вектором r; μ 0 – магнитная постоянная, μ – магнитная проницаемость среды, в которой находится провод (в нашем случае, т.к. средой является воздух, μ = 1).

Векторы от различных элементов тока сонаправлены (рис.), поэтому выражение (1) можно переписать в скалярной форме:

где α – угол между радиус-вектором и элементом тока dl .

Подставляя выражение (4) в (3), получим

Заметим, что при симметричном расположении точки А относительно отрезка провода cos α 2 = - cos α 1 .

С учетом этого формула (7) примет вид

Подставляя формулу (9) в (8), получим


Задача 5.2. Два параллельных бесконечно длинных провода D и C, по которым текут токи в одном направлении электрические токи силой I = 60 А, расположены на расстоянии d = 10 см друг от друга. Определить магнитную индукцию поля, создаваемого проводниками с током в точке А (рис.), отстоящей от оси одного проводника на расстоянии r 1 = 5 см, от другого – r 2 = 12 см.

Модуль вектора магнитной индукции найдем по теореме косинусов:

где α – угол между векторами B 1 и B 2 .

Магнитные индукции B 1 и B 2 выражаются соответственно через силу тока I и расстояния r 1 и r 2 от проводов до точки А:

Из рисунка видно, что α = Ð DAC (как углы с соответственно перпендикулярными сторонами).

Из треугольника DAC по теореме косинусов, найдем cosα

Проверим, дает ли правая часть полученного равенства единицу индукции магнитного поля (Тл)

Вычисления:

Ответ: B = 3,08·10 -4 Тл.

Задача 5.3. По тонкому проводящему кольцу радиусом R = 10 см течет ток I = 80 А. Найти магнитную индукцию в точке А, равноудаленной от всех точек кольца на расстояние r = 20 см.

определяемой радиус-вектором .

где интегрирование ведется по всем элементам dl кольца.

Разложим вектор dB на две составляющие dB ┴ , перпендикулярную плоскости кольца, и dB || , параллельную плоскости кольца, т.е.

где и (поскольку dl перпендикулярен r и, следовательно, sinα = 1).

С учетом этого формула (3) примет вид

Проверим, дает ли правая часть равенства (5) единицу магнитной индукции

Вычисления:

Тл.

Ответ: B = 6,28·10 -5 Тл.

Задача 5.4. Длинный провод с током I = 50 А изогнут под углом α = 2π/3. Определить магнитную индукцию в точке А (рис. к задаче 5.4., а). Расстояние d = 5 см.

Вектор сонаправлен с вектором и определяется правилом правого винта. На рисунке 5.4.,б это направление отмечено крестиком в кружочке (т.е. перпендикулярно плоскости чертежа, от нас).

Вычисления:

Тл.

Ответ: B = 3,46·10 -5 Тл.


Задача 5.5. Два бесконечно длинных провода скрещены под прямым углом (рис. к задаче 5.5.,а ). По проводам текут токи I 1 = 80 А и I 2 = 60 А. Расстояние d между проводами равно 10 см. Определить магнитную индукцию B в точке А, одинаково удаленной от обоих проводов.
Дано: I 1 = 80 А I 2 = 60 А d = 10 см = 0,1 м Решение: В соответствии с принципом суперпозиции магнитных полей магнитная индукция в точке А будет равна геометрической сумме магнитных индукций и , создаваемых токами I 1 и I 2 .
Найти: B - ?

Из рисунка следует, что векторы B 1 и B 2 взаимно перпендикулярны (их направления находятся по правилу буравчика и изображены в двух проекциях на рис. к задаче 5.5.,б).

Напряженность магнитного поля, согласно (5.8), созданного бесконечно длинным прямолинейным проводником,

где μ – относительная магнитная проницаемость среды (в нашем случае μ = 1).

Подставляя формулу (2) в (3), найдем магнитные индукций B 1 и B 2 , создаваемых токами I 1 и I 2

Подставляя формулу (4) в (1), получим

Проверим, дает ли правая часть полученного равенства единицу магнитной индукции (Тл):

Вычисления:

Тл.

Ответ: B = 4·10 -6 Тл.

Задача 5.6. Бесконечно длинный провод изогнут так, как это изображено на рисунке к задаче 5.6,а . Радиус R дуги окружности равен 10 см. Определить магнитную индукцию поля, создаваемого в точке О током I = 80 A, текущим по этому проводу.

В нашем случае провод можно разбить на три части (рис. к задаче 5.6, б): два прямолинейных провода (1 и 3), одним концом, уходящие в бесконечность, и дугу полуокружности (2) радиуса R.

Учитывая, что векторы направлены в соответствии с правилом буравчика перпендикулярно плоскости чертежа от нас, то геометрическое суммирование можно заменить алгебраическим:

В нашем случае магнитное поле в точке О создается лишь половиной такого кругового тока, поэтому

В нашем случае r 0 = R, α 1 = π/2 (cos α 1 = 0), α 2 → π (cos α 2 = -1).

Проверим, дает ли правая часть полученного равенства единицу магнитной индукции (Тл):

Вычисления:

Тл.

Ответ: B = 3,31·10 -4 Тл.

Задача 5.7. По двум параллельным прямым проводам длиной l = 2,5 см каждый, находящимся на расстоянии d = 20 см друг от друга, текут одинаковые токи I = 1 кА. Вычислить силу взаимодействия токов.

Ток I 1 создает в месте расположения второго провода (с током I 2) магнитное поле. Проведем линию магнитной индукции (пунктир на рис.) через второй провод и по касательной к ней – вектор магнитной индукции B 1 .

Рисунок к задаче 5.7

Модуль магнитной индукции B 1 определяется соотношением

Так как вектор dl перпендикулярен вектору B 1 , то sin(dl ,B) = 1 и тогда

Силу F взаимодействия проводов с током найдем интегрированием:

Проверим, дает ли правая часть полученного равенства единицу силы (Н):

Вычисление:

Н.

Ответ: F = 2,5 Н.

Так как сила Лоренца перпендикулярна вектору скорости , то она сообщит частице (протону) нормальное ускорение a n .

Согласно второму закону Ньютона,

, (1)

где m – масса протона.

На рисунке совмещена траектория протона с плоскостью чертежа и дано (произвольно) направление вектора . Силу Лоренца направим перпендикулярно вектору к центру окружности (векторы a n и F л сонаправлены). Используя правило левой руки, определим направление магнитных силовых линий (направление вектора ).

Определение

Частота колебаний ($\nu$) является одним из параметров, которые характеризуют колебания Это величина обратная периоду колебаний ($T$):

\[\nu =\frac{1}{T}\left(1\right).\]

Таким образом, частотой колебаний называют физическую величину, равную числу повторений колебаний за единицу времени.

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $N$ - число полных колебательных движений; $\Delta t$ - время, за которые произошли данные колебания.

Циклическая частота колебаний (${\omega }_0$) связана с частотой $\nu $ формулой:

\[\nu =\frac{{\omega }_0}{2\pi }\left(3\right).\]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

\[\left[\nu \right]=с^{-1}=Гц.\]

Пружинный маятник

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать горизонтальные движения груза (рис.1), то он движется под действием силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. При этом часто считают, что силы трения можно не учитывать.

Уравнения колебаний пружинного маятника

Пружинный маятник, который совершает свободные колебания - это пример гармонического осциллятора. Пусть он выполняет колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(4\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решение уравнения (4) это функция синуса или косинуса вида:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний пружинного маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Частота колебаний пружинного маятника

Из формулы (3) и ${\omega }_0=\sqrt{\frac{k}{m}}$, следует, что частота колебаний пружинного маятника равна:

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(6\right).\]

Формула (6) справедлива в случае, если:

  • пружина в маятнике считается невесомой;
  • груз, прикрепленный к пружине, является абсолютно твердым телом;
  • крутильные колебания отсутствуют.

Выражение (6) показывает, что частота колебаний пружинного маятника увеличивается с уменьшением массы груза и увеличением коэффициента упругости пружины. Частота колебаний пружинного маятника не зависит от амплитуды. Если колебания не являются малыми, сила упругости пружины не подчиняется закону Гука, то появляется зависимость частоты колебаний от амплитуды.

Примеры задач с решением

Пример 1

Задание. Период колебаний пружинного маятника составляет $T=5\cdot {10}^{-3}с$. Чему равна частота колебаний в этом случае? Какова циклическая частота колебаний этого груза?

Решение. Частота колебаний - это величина обратная периоду колебаний, следовательно, для решения задачи достаточно воспользоваться формулой:

\[\nu =\frac{1}{T}\left(1.1\right).\]

Вычислим искомую частоту:

\[\nu =\frac{1}{5\cdot {10}^{-3}}=200\ \left(Гц\right).\]

Циклическая частота связана с частотой $\nu $ как:

\[{\omega }_0=2\pi \nu \ \left(1.2\right).\]

Вычислим циклическую частоту:

\[{\omega }_0=2\pi \cdot 200\approx 1256\ \left(\frac{рад}{с}\right).\]

Ответ. $1)\ \nu =200$ Гц. 2) ${\omega }_0=1256\ \frac{рад}{с}$

Пример 2

Задание. Массу груза, висящего на упругой пружине (рис.2), увеличивают на величину $\Delta m$, при этом частота уменьшается в $n$ раз. Какова масса первого груза?

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.1\right).\]

Для первого груза частота будет равна:

\[{\nu }_1=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.2\right).\]

Для второго груза:

\[{\nu }_2=\frac{1}{2\pi }\sqrt{\frac{k}{m+\Delta m}}\ \left(2.2\right).\]

По условию задачи ${\nu }_2=\frac{{\nu }_1}{n}$, найдем отношение $\frac{{\nu }_1}{{\nu }_2}:\frac{{\nu }_1}{{\nu }_2}=\sqrt{\frac{k}{m}\cdot \frac{m+\Delta m}{k}}=\sqrt{1+\frac{\Delta m}{m}}=n\ \left(2.3\right).$

Получим из уравнения (2.3) искомую массу груза. Для этого обе части выражения (2.3) возведем в квадрат и выразим $m$:

Ответ. $m=\frac{\Delta m}{n^2-1}$

), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

Если на систему оказывают влияние внешние силы, то уравнение колебаний перепишется так:

, где f(x) - это равнодействующая внешних сил соотнесённая к единице массы груза.

В случае наличия затухания , пропорционального скорости колебаний с коэффициентом c :

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Пружинный маятник" в других словарях:

    У этого термина существуют и другие значения, см. Маятник (значения). Колебания маятника: стрелками показаны векторы скорости (v) и ускорения (a) … Википедия

    Маятник - устройство, которое, колеблясь, упорядочивает движение механизма часов. Пружинный маятник. Регулирующая деталь часов, состоящая из маятника и его пружины. До изобретения маятниковой пружины, часы приводились в движение одним маятником.… … Словарь часов

    МАЯТНИК - (1) математический (или простой) (рис. 6) тело небольших размеров, свободно подвешенное к неподвижной точке на нерастяжимой нити (или стержне), масса которой пренебрежимо мала по сравнению с массой тела, совершающего гармонические (см.)… … Большая политехническая энциклопедия

    Твёрдое тело, совершающее под действием прилож. сил колебания ок. неподвижной точки или оси. Математическим М. наз. материальная точка, подвешенная к неподвижной точке на невесомой нерастяжимой нити (или стержне) и совершающая под действием силы… … Большой энциклопедический политехнический словарь

    Часы с пружинным маятником - пружинный маятник регулирующая часть часов, также используется в часах средних и маленьких размеров (переносные часы, настольные, и т.д.) … Словарь часов - маленькая спиральная пружина, прикрепленная концами к маятнику и его молоточку. Пружинный маятник регулирует часы, точность которых частично зависит от качества маятниковой пружины … Словарь часов

    ГОСТ Р 52334-2005: Гравиразведка. Термины и определения - Терминология ГОСТ Р 52334 2005: Гравиразведка. Термины и определения оригинал документа: (гравиметрическая) съемка Гравиметрическая съемка, проводимая на суше. Определения термина из разных документов: (гравиметрическая) съемка 95… … Словарь-справочник терминов нормативно-технической документации

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама