THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

С рождения мы видим красоту окружающей нас природы. С младенческих лет родители прививают своим чадам любовь к животному миру . Некоторых редких представителей млекопитающих, птиц, насекомых, рыбок и растений мы видели на картинках, а других в жизни.

Подрастая, нам хочется узнавать не только их названия, но и как они устроены, где обитают и как взаимодействуют с другими живыми организмами. Почему же нас тянет наблюдать за удивительным миром растений и животных? Потому что мы сами являемся частью природы и зависим от окружающего живого мира.

Биология крайне увлекательная наука. Она изучает все живые организмы и как они влияют друг на друга . Само слово состоит из двух (биос и логос) и переводится как слово о жизни или учение о жизни.

Что изучает биология?

Биология изучает все живые организмы, независимо от их размера и среды обитания. Процессы, которые происходят в природе очень сложны, а живых существ на Земле так много, что пришлось разделить биологию на самостоятельные науки . Мы отметим лишь некоторые, например: генетика, анатомия, физиология человека, селекция, эмбриология и многое другое.

Биология в художественной литературе

Есть писатели, котрые работают только в этом жанре. Они прилагают много усилий, чтобы текст предоставлял достоверную информацию об особенностях живых организмов. Их произведения представляют большой интерес, ведь в отличие от школьной программы их книги читаются легко и написанное быстро запоминается.

Читатели как взрослые, так и маленькие могут живо представить, в какой природной зоне происходит действие, какие там обитают организмы, какая пора года и много другой полезной информации. Литературная биология зачастую идёт рука об руку с ботаникой, зоологией биогеографией.

Почему полезно читать книги по биологии?

Рассказы, очерки, заметки о природе интересны разным возрастным категориям читателей. Дети, читая, лучше узнают окружающий мир и становятся добрее, ответственней, а взрослым художественная литература поставляет дополнительные биологические знания.

Какие книги стоит прочитать?

В нашей электронной библиотеке большой выбор литературы о животных, растениях и других живых организмах. Особенно популярны такие произведения, которые вы можете прочитать онлайн бесплатно:

  • Игорь Акимушкин ;
  • Николай Верзилин ;
  • Мартин Гарднер ;
  • Ричард Докинз ;
  • Пётр Образцов и многое другое.

В небольшой по формату книге расписана работа нашего мозга. Доступным языком автор описывает (практически с нуля) жизнедеятельность этого до сих пор малоизученного органа. Ценность книги в том, что серьёзную тему Азимов излагает в юмористическом ключе. Прочитав её, вы осознаете всю грандиозность человеческого существа!


Кэрол Доннер

Анатомия скучная для детей наука. Большинство выученного в школе материала дети забывают. Для того чтобы ребёнок заинтересовался анатомией, обязательно пусть прочитает эту книгу! Она написана в приключенческом жанре. Близнецы Макс и Молли чудесным образом попадают внутрь человеческого организма.

Там они знакомятся с Вольняшкой маленькой тканевой жидкостью, которая поможет им выбраться из этой ситуации. Детей ждут удивительные приключения, сопряжённые со смертельной опасностью, ведь человеческий организм оснащён защитниками — макрофагами.

Дети чудом не растворятся в желудке и совершат плавание по кровеносным сосудам. Простым языком автор рассказывает о нейронах, строении мозга и других органах.

Предпосылками создания клеточной теории были изобретение и усовершенствование микроскопа и открытие клеток (1665 г., Р. Гук – при изучении среза коры пробкового дерева, бузины и др.). Работы известных микроскопистов: М. Мальпиги, Н. Грю, А. ван Левенгука – позволили увидеть клетки растительных организмов. А. ван Левенгук обнаружил в воде одноклеточные организмы. Сначала изучалось клеточное ядро. Р. Браун описал ядро растительной клетки. Я. Э. Пуркине ввел понятие протоплазмы – жидкого студенистого клеточного содержимого.

Немецкий ботаник М. Шлейден первым пришел к выводу, что в любой клетке есть ядро. Основателем КТ считается немецкий биолог Т. Шванн (совместно с М. Шлейденом), который в 1839 г. опубликовал труд «Микроскопические исследования о соответствии в структуре и росте животных и растений». Его положения:

1) клетка – главная структурная единица всех живых организмов (как животных, так и растительных);

2) если в каком-либо образовании, видимом под микроскопом, есть ядро, то его можно считать клеткой;

3) процесс образования новых клеток обусловливает рост, развитие, дифференцировку растительных и животных клеток. Дополнения в клеточную теорию внес немецкий ученый Р. Вирхов, который в 1858 г. опубликовал свой труд «Целлюлярная патология». Он доказал, что дочерние клетки образуются путем деления материнских клеток: каждая клетка из клетки. В конце XIX в. были обнаружены митохондрии, комплекс Гольджи, пластиды в растительных клетках. После окрашивания делящихся клеток специальными красителями были обнаружены хромосомы. Современные положения КТ

1. Клетка – основная единица строения и развития всех живых организмов, является наименьшей структурной единицей живого.

2. Клетки всех организмов (как одно-, так и многоклеточных) сходны по химическому составу, строению, основным проявлениям обмена веществ и жизнедеятельности.

3. Размножение клеток происходит путем их деления (каждая новая клетка образуется при делении материнской клетки); в сложных многоклеточных организмах клетки имеют различные формы и специализированы в соответствии с выполняемыми функциями. Сходные клетки образуют ткани; из тканей состоят органы, которые образуют системы органов, они тесно взаимосвязаны и подчинены нервным и гуморальным механизмам регуляции (у высших организмов).

Значение клеточной теории

Отало ясно, что клетка – важнейшая составляющая часть живых организмов, их главный морфофизиологический компонент. Клетка – это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.

2. Определение жизни на современном этапе развития науки

Довольно трудно дать полное и однозначное определение понятию жизни, учитывая огромное разнообразие ее проявлений. В большинстве определений понятия жизни, которые давались многими учеными и мыслителями на протяжении веков, учитывались ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь – это «питание, рост и одряхление» организма; А. Л. Лавуазье определял жизнь как «химическую функцию»; Г. Р. Тревиранус считал, что жизнь есть «стойкое единообразие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи. Кроме того, наблюдения свидетельствуют, что свойства живого не исключительны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин определял жизнь как «особую, очень сложную форму движения материи». Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим закономерностям. Однако и в этом случае определение носит общий характер и не раскрывает конкретного своеобразия этого движения.

Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».

Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам. Вот одно из них: жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии. Согласно данному определению жизнь представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обменивается с окружающей средой веществом, энергией и информацией.

3. Фундаментальные свойства живой материи

Эти свойства в комплексе характеризуют любую живую систему и жизнь вообще:

1) самообновление. Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;

2) самовоспроизведение. Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;

3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм;

4) раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования. С раздражимостью связана саморегуляция живых систем по принципу обратной связи: продукты жизнедеятельности способны оказывать тормозящее или стимулирующее воздействие на те ферменты, которые стояли в начале длинной цепи химических реакций;

5) поддержание гомеостаза (от гр. homoios – «подобный, одинаковый» и stasis – «неподвижность, состояние») – относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;

6) структурная организация – определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой – биогеоценозов;

7) адаптация – способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;

1. Клеточная теория (КТ) Предпосылки клеточной теории

Предпосылками создания клеточной теории были изобретение и усовершенствование микроскопа и открытие клеток (1665 г., Р. Гук – при изучении среза коры пробкового дерева, бузины и др.). Работы известных микроскопистов: М. Мальпиги, Н. Грю, А. ван Левенгука – позволили увидеть клетки растительных организмов. А. ван Левенгук обнаружил в воде одноклеточные организмы. Сначала изучалось клеточное ядро. Р. Браун описал ядро растительной клетки. Я. Э. Пуркине ввел понятие протоплазмы – жидкого студенистого клеточного содержимого.

Немецкий ботаник М. Шлейден первым пришел к выводу, что в любой клетке есть ядро. Основателем КТ считается немецкий биолог Т. Шванн (совместно с М. Шлейденом), который в 1839 г. опубликовал труд «Микроскопические исследования о соответствии в структуре и росте животных и растений». Его положения:

1) клетка – главная структурная единица всех живых организмов (как животных, так и растительных);

2) если в каком-либо образовании, видимом под микроскопом, есть ядро, то его можно считать клеткой;

3) процесс образования новых клеток обусловливает рост, развитие, дифференцировку растительных и животных клеток. Дополнения в клеточную теорию внес немецкий ученый Р. Вирхов, который в 1858 г. опубликовал свой труд «Целлюлярная патология». Он доказал, что дочерние клетки образуются путем деления материнских клеток: каждая клетка из клетки. В конце XIX в. были обнаружены митохондрии, комплекс Гольджи, пластиды в растительных клетках. После окрашивания делящихся клеток специальными красителями были обнаружены хромосомы. Современные положения КТ

1. Клетка – основная единица строения и развития всех живых организмов, является наименьшей структурной единицей живого.

2. Клетки всех организмов (как одно-, так и многоклеточных) сходны по химическому составу, строению, основным проявлениям обмена веществ и жизнедеятельности.

3. Размножение клеток происходит путем их деления (каждая новая клетка образуется при делении материнской клетки); в сложных многоклеточных организмах клетки имеют различные формы и специализированы в соответствии с выполняемыми функциями. Сходные клетки образуют ткани; из тканей состоят органы, которые образуют системы органов, они тесно взаимосвязаны и подчинены нервным и гуморальным механизмам регуляции (у высших организмов).

Значение клеточной теории

Отало ясно, что клетка – важнейшая составляющая часть живых организмов, их главный морфофизиологический компонент. Клетка – это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.

2. Определение жизни на современном этапе развития науки

Довольно трудно дать полное и однозначное определение понятию жизни, учитывая огромное разнообразие ее проявлений.

В большинстве определений понятия жизни, которые давались многими учеными и мыслителями на протяжении веков, учитывались ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь – это «питание, рост и одряхление» организма; А. Л. Лавуазье определял жизнь как «химическую функцию»; Г. Р. Тревиранус считал, что жизнь есть «стойкое единообразие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи. Кроме того, наблюдения свидетельствуют, что свойства живого не исключительны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин определял жизнь как «особую, очень сложную форму движения материи». Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим закономерностям. Однако и в этом случае определение носит общий характер и не раскрывает конкретного своеобразия этого движения.

Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».

Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам. Вот одно из них: жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии. Согласно данному определению жизнь представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обменивается с окружающей средой веществом, энергией и информацией.

3. Фундаментальные свойства живой материи

Эти свойства в комплексе характеризуют любую живую систему и жизнь вообще:

1) самообновление. Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;

2) самовоспроизведение. Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;

3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм;

4) раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования. С раздражимостью связана саморегуляция живых систем по принципу обратной связи: продукты жизнедеятельности способны оказывать тормозящее или стимулирующее воздействие на те ферменты, которые стояли в начале длинной цепи химических реакций;

5) поддержание гомеостаза (от гр. homoios – «подобный, одинаковый» и stasis – «неподвижность, состояние») – относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;

6) структурная организация – определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой – биогеоценозов;

7) адаптация – способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;

8) репродукция (воспроизведение). Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;

9) наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации).

Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

10) изменчивость – свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;

11) индивидуальное развитие (процесс онтогенеза) – воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;

12) филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество видов. Прогрессивная эволюция прошла ряд ступеней. Это до-клеточные, одноклеточные и многоклеточные организмы вплоть до человека.

При этом онтогенез человека повторяет филогенез (т. е. индивидуальное развитие проходит те же этапы, что и эволюционный процесс);

13) дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять развитие того или иного признака.

4. Уровни организации жизни

Живая природа – это целостная, но неоднородная система, которой свойственна иерархическая организация. Иерархической называется такая система, в которой части (или элементы целого) расположены в порядке от высшего к низшему. Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что весьма удобно при из-учении жизни как сложного природного явления. Можно выделить три основные ступени живого: микросистемы, мезосистемы и макросистемы.

Микросистемы (доорганизменная ступень) включают в себя молекулярный (молекулярно-генетический) и субклеточный уровни.

Мезосистемы (организменная ступень) включают в себя клеточный, тканевый, органный, системный, организменный (организм как единое целое), или онтогенетический, уровни.

Макросистемы (надорганизменная ступень) включают в себя популяционно-видовой, биоценотический и глобальный уровни (биосферу в целом). На каждом уровне можно выделить элементарную единицу и явление.

Элементарная единица (ЭЕ) – это структура (или объект), закономерные изменения которой (элементарные явления, ЭЯ) составляют ее вклад в развитие жизни на данном уровне.

Иерархические уровни:

1) молекулярно-генетический уровень. ЭЕ представлена геном. Ген – это участок молекулы ДНК (а у некоторых виру-сов-молекулы РНК), который ответствен за формирование какого – либо одного признака. Информация, заложенная в нуклеиновых кислотах, реализуется посредством матричного синтеза белков;

2) субклеточный уровень. ЭЕ представлена какой-либо субклеточной структурой, т. е. органеллой, которая выполняет свойственные ей функции и вносит свой вклад в работу клетки в целом;

3) клеточный уровень. ЭЕ – это клетка, которая является самостоятельно функционирующей элементарной биологической системой. Только на этом уровне возможны реализация генетической информации и процессы биосинтеза. Для одноклеточных организмов этот уровень совпадает с организменным. ЭЯ – это реакции клеточного метаболизма, составляющие основу потоков энергии, информации и вещества;

4) тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань (ЭЕ). Уровень возник с появлением многоклеточных организмов с более или менее дифференцированными тканями. Ткань функционирует как единое целое и обладает свойствами живого;

5) органный уровень. Образован совместно с функционирующими клетками, относящимися к разным тканям (ЭЕ). Всего четыре основные ткани входят в состав органов многоклеточных организмов, шесть основных тканей образуют органы растений;

6) организменный (онтогенетический) уровень. ЭЕ – это особь в ее развитии от момента рождения до прекращения ее существования в качестве живой системы. ЭЯ – это закономерные изменения организма в процессе индивидуального развития (онтогенеза). В процессе онтогенеза в определенных условиях среды происходит воплощение наследственной информации в биологические структуры, т. е. на основе генотипа особи формируется ее фенотип;

7) популяционно-видовой уровень. ЭЕ – это популяция, т. е. совокупность особей (организмов) одного вида, населяющих одну территорию и свободно скрещивающихся между собой. Популяция обладает генофондом, т. е. совокупностью генотипов всех особей. Воздействие на генофонд элементарных эволюционных факторов (мутаций, колебаний численности особей, естественного отбора) приводит к эволюционно значимым изменениям (ЭЯ);

8) биоценотический (экосистемный) уровень. ЭЕ – биоценоз, т. е. исторически сложившееся устойчивое сообщество популяций разных видов, связанных между собой и с окружающей неживой природой обменом веществ, энергии и информации (круговоротами), которые и представляют собой ЭЯ;

9) биосферный (глобальный) уровень. ЭЕ – биосфера (область распространения жизни на Земле), т. е. единый планетарный комплекс биогеоценозов, различных по видовому составу и характеристике абиотической (неживой) части. Биогеоценозы обусловливают все процессы, протекающие в биосфере;

10) носферный уровень. Это новое понятие было сформулировано академиком В. И. Вернадским. Он основал учение o ноосфере как сфере разума. Это составная часть биосферы, которая изменена благодаря деятельности человека.

ЛЕКЦИЯ № 2. Химический состав живых систем. Биологическаяроль белков, полисахаридов, липидов и АТФ

1. Обзор химического строения клетки

Все живые системы содержат в различных соотношениях химические элементы и построенные из них химические соединения, как органические, так и неорганические.

По количественному содержанию в клетке все химические элементы делят на 3 группы: макро-, микро– и ультрамикроэлементы.

Макроэлементы составляют до 99 % массы клетки, из которых до 98 % приходится на 4 элемента: кислород, азот, водород и углерод. В меньших количествах клетки содержат калий, натрий, магний, кальций, серу, фосфор, железо.

Микроэлементы – преимущественно ионы металлов (кобальта, меди, цинка и др.) и галогенов (йода, брома и др.). Они содержатся в количествах от 0,001 % до 0,000001 %.

Ультрамикроэлементы. Их концентрация ниже 0,000001 %. К ним относят золото, ртуть, селен и др.

Химическое соединение – это вещество, в котором атомы одного или нескольких химических элементов соединены друг с другом посредством химических связей. Химические соединения бывают неорганическими и органическими. К неорганическим относят воду и минеральные соли. Органические соединения – это соединения углерода с другими элементами.

Основными органическими соединениями клетки являются белки, жиры, углеводы и нуклеиновые кислоты.

2. Биополимеры Белки

Это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота. Молекула белка может иметь 4 уровня структурной организации (первичная, вторичная, третичная и четвертичная структуры).

Функции белков:

1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);

2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);

3) двигательная (миозин участвует в сокращении мышц);

4) запасная (альбумины яйца);

5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);

6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);

7) регуляторная (регуляторные белки определяют активность генов);

8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);

9) белки-ферменты катализируют все химические реакции в организме;

10) энергетическая (при распаде 1 г белка выделяется 17 кдж энергии).

Углеводы

Это моно– и полимеры, в состав которых входит углерод, водород и кислород в соотношении 1: 2: 1.

Функции углеводов:

1) энергетическая (при распаде 1 г углеводов выделяется 17,6 кдж энергии);

2) структурная (целлюлоза, входящая в состав клеточной стенки у растений);

3) запасающая (запас питательных веществ в виде крахмала у растений и гликогена у животных).

Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.

Функции липидов:

1) энергетическая (при распаде 1 г липидов образуется 38,9 кдж энергии);

2) структурная (фосфолипиды клеточных мембран, образующие липидный бислой);

3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);

4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);

5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);

6) теплоизолирующая (подкожная клетчатка сохраняет тепло). АТФ

Молекула АТФ (аденозинтрифосфорной кислоты) состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргической связью. АТФ образуется в митохондриях в процессе фосфорилирования. При ее гидролизе высвобождается большое количество энергии. АТФ является основным макроэргом клетки – аккумулятором энергии в виде энергии высокоэнергетических химических связей.

ЛЕКЦИЯ № 3. Нуклеиновые кислоты. Биосинтез белка

Нуклеиновые кислоты – это фосфорсодержащие биополимеры, мономерами которых являются нуклеотиды. Цепи нуклеиновых кислот включают от нескольких десятков до сотен миллионов нуклеотидов.

Существует 2 вида нуклеиновых кислот – дезоксирибо-нуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеотиды, входящие в состав ДНК, содержат углевод, дезокси-рибозу, в состав РНК – рибозу.

1. ДНК

Как правило, ДНК представляет собой спираль, состоящую из двух комплиментарных полинуклеотидных цепей, закрученных вправо. В состав нуклеотидов ДНК входят: азотистое основание, дезоксирибоза и остаток фосфорной кислоты. Азотистые основания делят на пуриновые (аденин и гуанин) и пиримидиновые (ти-мин и цитозин). Две цепи нуклеотидов соединяются между собой через азотистые основания по принципу комплементарности: между аденином и тимином возникают две водородные связи, между гуанином и цитозином – три.

Функции ДНК:

1) обеспечивает сохранение и передачу генетической информации от клетки к клетке и от организма к организму, что связано с ее способностью к репликации;

2) регуляция всех процессов, происходящих в клетке, обеспечиваемая способностью к транскрипции с последующей трансляцией.

Процесс самовоспроизведения (авто-репродукции) ДНК называется репликацией. Репликация обеспечивает копирование генетической информации и передачу ее из поколения в поколение, генетическую идентичность дочерних клеток, образующихся в результате митоза, и постоянство числа хромосом при митоти-ческом делении клетки.


Репликация происходит в синтетический период интерфазы митоза. Фермент репликаза движется между двумя цепями спирали ДНК и разрывает водородные связи между азотистыми основаниями. Затем к каждой из цепочек с помощью фермента ДНК-полимеразы по принципу комплементарности достраиваются нуклеотиды дочерних цепочек. В результате репликации образуются две идентичные молекулы ДНК. Количество ДНК в клетке удваивается. Такой способ удвоения ДНК называется полуконсервативным, так как каждая новая молекула ДНК содержит одну «старую» и одну вновь синтезированную полинуклеотидную цепь.

М.: 1992. - 288с. М.: 1987. - 288с.

Учебник для 10 - 11 классов средней школы. Под ред. Ю.И. Полянского.

Формат: pdf ( 1992 , 22-е изд., 288с.)

Размер: 32 Мб

Смотреть, скачать: drive.google

Формат: pdf ( 1987 , 17-е изд., 288с.)

Размер: 9,3 Мб

Смотреть, скачать: drive.google

Формат: djvu / zip ( 1987 , 17-е изд., 288с.)

Размер: 6Мб

/ Download файл

Формат: djvu / zip ( 1967 , 2-е изд., 304с.)

Размер: 5,15Мб

/ Download файл

СОДЕРЖАНИЕ:
Введение 6
ГЛАВА I. ЭВОЛЮЦИОННОЕ УЧЕНИЕ
1. Эволюционные представления до Ч. Дарвина. Возникновение учения Дарвина 11
2. Основные положения учения Дарвина. Значение дарвинизма 14
3. Вид. Популяция 16
4. Наследственность и изменчивость 19-
5. Искусственный отбор. Факторы эволюции пород животных и сортов растений 22
6. Борьба за существование 25
7. Естественный отбор, другие факторы эволюции 29
8. Приспособленность организмов и ее относительность 33
9. Образование новых видов 38
ГЛАВА II. РАЗВИТИЕ ОРГАНИЧЕСКОГО МИРА
10. Макроэволюция, ее доказательства 43
11. Система растений и животных - отображение эволюции 47
12. Главные направления эволюции органического мира.50
13. История развития жизни на Земле 54
ГЛАВА III . ПРОИСХОЖДЕНИЕ ЧЕЛОВЕКА
14. Доказательства происхождения человека от животных 59
15. Движущие силы (факторы) антропогенеза 63
16. Направления эволюции человека. Древнейшие люди 67
17. Направления эволюции человека. Древние и первые современные люди 70
18. Человеческие расы. Критика расизма и социального дарвинизма 73
ГЛАВА IV. ОСНОВЫ ЭКОЛОГИИ
19. Задачи экологии. Экологические факторы и их взаимодействие. Математическое моделирование 77
20. Основные абиотические факторы среды и их значение для живой природы 80
21. Приспособление организмов к сезонным изменениям в природе. Фотопериодизм 82
22. Вид и популяция - их экологическая характеристика 86
23. Проблемы рационального использования видов и сохранения их многообразия 89
24. Экологические системы 91
25. Водоем и дубрава как примеры биогеоценозов 95
26. Изменения в биогеоценозах 101
27. Биогеоценозы, создаваемые человеком 104
ГЛАВА V. ОСНОВЫ УЧЕНИЯ О БИОСФЕРЕ
28. Биосфера и свойства биомассы планеты Земля 109
29. Биомасса поверхности суши и океана. 113
30. Круговорот веществ и превращения энергии в биосфере 116
ГЛАВА VI. ОСНОВЫ ЦИТОЛОГИИ
31. Клеточная теория 123
32. Строение и функции оболочки клетки 127
33. Цитоплазма и ее органоиды: эндоплазматическая сеть, митохондрии и пластиды 131
34. Аппарат Гольджи, лизо-сомы и другие органоиды цитоплазмы. Включения 136
35. Ядро 139
36. Прокариотические клетки. Неклеточные формы жизни - вирусы 141
37. Химический состав клетки. Неорганические вещества 145
38. Органические вещества клетки. Белки, их строение 147
39. Свойства и функции белков 153
40. Углеводы. Липиды 155
41. Нуклеиновые кислоты. ДНК и РНК - 157
42. Обмен веществ. Адено-зинтрифосфорная кислота - АТФ 162
43. Энергетический обмен в клетке. Синтез АТФ 165
44. Пластический обмен. Биосинтез белков. Синтез и-РНК 167
45. Синтез полипептидной цепи на рибосоме 171
46. Особенности пластического и энергетического обменов растительной клетки 175
ГЛАВА VII. РАЗМНОЖЕНИЕ И ИНДИВИДУАЛЬНОЕ РАЗВИТИЕ ОРГАНИЗМОВ
47. Деление клетки. Митоз. 181
48. Формы размножения организмов 185
49. Мейоз 187
50. Оплодотворение 190
51. Индивидуальное развитие организма-онтогенез 192
52. Возникновение и начальное развитие жизни на Земле 195
ГЛАВА VIII. ОСНОВЫ ГЕНЕТИКИ
53. Гибридологический метод изучения наследственности. Первый закон Менделя 203
54. Цитологические основы закономерностей наследования 207
55. Дигибридное скрещивание. Второй закон Менделя 211
56. Цитологические основы дигибридного скрещивания 214
57. Явление сцепленного наследования и генетика пола 215
58. Генотип как целостная система 220
59. Генетика человека и ее значение для медицины и здравоохранения 222
60. Модификационная изменчивость 227
61. Наследственная изменчивость 230
62. Материальные основы наследственности и изменчивости. Генная инженерия. 236
63. Генетика и эволюционная теория. 239
ГЛАВА IX. СЕЛЕКЦИЯ РАСТЕНИЙ, ЖИВОТНЫХ И МИКРООРГАНИЗМОВ
64. Задачи современной селекции 245
65. Центры многообразия и происхождения культурных растений 246
66. Селекция растений 248
67. Работы И. В. Мичурина. Достижения селекции растений в Советском Союзе 253
68. Селекция животных. 256
69. Создание высокопродуктивных пород домашних животных. Селекция микроорганизмов. Биотехнология 259
ГЛАВА X. ЭВОЛЮЦИЯ БИОСФЕРЫ. НАРУШЕНИЕ ПРИРОДНЫХ ЗАКОНОМЕРНОСТЕЙ В РЕЗУЛЬТАТЕ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
70. Биосфера и научно-технический прогресс 267
71. Ноосфера 270
Указатель терминов 277
Краткий словарь терминов 281

Учебник отражает современное состояние науки об общих закономерностях происхождения и развития жизни на Земле. В I часть учебника включены разделы: «Введение», «Жизнь как природное явление», «Биология клетки», «Размножение организмов», «Организация наследственного материала», «Закономерности наследования» и «Изменчивость».
Учебник предназначен для студентов ВУЗов, обучающихся по биологическим, медицинским и аграрным специальностям.

Свойства живого.
Живые организмы, в отличие от тел неживой природы, характеризуются рядом свойств, которые являются, по сути, атрибутами жизни: упорядоченность и специфичность структуры, целостность и дискретность, саморегуляция и гомеостаз, самовоспроизведение и самовосстановление, наследственность и изменчивость, обмен веществ и энергии, рост и развитие, раздражимость, движение, саморегуляция, специфическая взаимосвязь с окружающей средой, старение и смерть, вовлечённость в непрерывный процесс исторических изменений живого (эволюционный процесс). Эти атрибуты жизни являются объектами исследований многих самостоятельных биологических наук, результаты которых изложены ниже в различных разделах учебника. Однако некоторые из них обоснованно отнесены к основополагающим и требуют специального рассмотрения уже в начале курса «Общая биология».

Упорядоченность и специфичность структуры. В живых организмах содержатся те же химические элементы, что и в объектах живой природы. Однако в клетках живых существ они находятся в виде не только неорганических, но и органических соединений. К тому же форма существования живого имеет весьма существенные специфические особенности, в первую очередь сложность и упорядоченность, которые отличают как молекулярный, так и надмолекулярный уровни организации. Создание порядка - важнейшее свойство живого. Упорядоченность в пространстве сопровождается упорядоченностью во времени.

Оглавление
ВВЕДЕНИЕ 3
ГЛАВА 1. ЖИЗНЬ КАК ПРИРОДНОЕ ЯВЛЕНИЕ 9
1.1. Определение сущности жизни 9
1.2. Субстрат жизни 10
1.3. Свойства живого 11
1.4. Фундаментальные свойства жизни 12
1.5. Уровни организации жизни 13
ГЛАВА2. БИОЛОГИЯ КЛЕТКИ 16
2.1. Клетка - элементарная структурно-функциональная и генетическая единица жизни 16
2.2. Основные этапы развития и современное состояние клеточной теории 16
2.3. Структурная организация прокариотической и эукариотической клеток 20
2.4. Поверхностный аппарат клетки 23
2.5. Цитоплазматический аппарат клетки 30
2.5.1. Гиалоплазма 30
2.5.2. Органеллы (органоиды) клетки 32
2.5.2.1. Мембранные органоиды (органеллы) 34
2.5.2.2. Немембранные органоиды (органеллы) 41
2.6. Ядерный аппарат клетки 49
2.7. Жизненный цикл клетки 55
2.7.1. Понятие о жизненном цикле клетки 55
2.7.2. Интерфаза 56
2.7.2.1. Постмитотический период 57
2.7.2.2. Синтетический период. Самоудвоение ДНК 57
2.7.2.3. Премитотический период 64
2.7.2.4. Митотический период 65
2.7.2.5. Обновление клеток в клеточных популяциях 69
2.7.2.6. Реакция клеток на неблагоприятные воздействия 70
2.7.2.7. Дистрофия клетки 70
ГЛАВА 3. РАЗМНОЖЕНИЕ ОРГАНИЗМОВ 73
3.1. Размножение - универсальное свойство живого. Эволюция размножения 73
3.2. Бесполое размножение 73
3.2.1. Моноцитогенное бесполое размножение 73
3.2.2. Полицитогенное бесполое размножение 75
3.3. Половое размножение 76
3.3.1. Эволюция способов полового размножения 77
3.3.2. Гаметогенез 82
3.3.3. Оплодотворение 91
3.4. Пути межвидового обмена биологической информацией 92
3.5. Биологические аспекты полового диморфизма 95
ГЛАВА 4. ОРГАНИЗАЦИЯ НАСЛЕДСТВЕННОГО МАТЕРИАЛА 97
4.1. Предмет, задачи и методы генетики. Этапы развития генетики 97
4.2. Структурно-функциональные уровни организации наследственного материала 100
4.3. Ген как функциональная единица наследственности. Классификация, свойства и локализация генов 102
4.4. Основные положения хромосомной теории наследственности 108
ГЛАВА 5. ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ
5.1. Наследственность как свойство обеспечения материальной преемственности между поколениями 110
5.2. Типы и закономерности наследования 111
5.3. Фенотип как результат реализации генотипа в определённых условиях среды 117
5.4. Молекулярно-биологические представления о строении и функционировании генов. Экспрессия генов и её регуляция 118
5.5. Взаимодействие генов 122
5.5.1. Взаимодействие аллельных генов 122
5.5.2. Взаимодействие неаллельных генов 125
5.6. Плейотропия 129
5.7. Множественный аллелизм 131
5.8. Экспрессивность и пенетрантность. Генокопии 133
5.9. Генетическая инженерия 134
ГЛАВА 6. ИЗМЕНЧИВОСТЬ 137
6.1. Изменчивость как универсальное свойство живого 137
6.2. Модификационная изменчивость, её адаптивный характер, значение вонтогенезе и эволюции 138
6.3. Статистические методы изучения модификационной изменчивости 143
6.4. Генотипическая изменчивость. Механизмы и биологическое 146.


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Общая биология, Часть 1, Сыч В.Ф., 2005 - fileskachat.com, быстрое и бесплатное скачивание.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама