THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

9. Непрерывная случайная величина, её числовые характеристики

Непрерывную случайную величину можно задать с помощью двух функций. Интегральной функцией распределения вероятностей случайной величины Х называется функция , определённая равенством
.

Интегральная функция даёт общий способ задания как дискретных, так и непрерывных случайных величин. В случае непрерывной случайной величины . Все события: имеют одну и ту же вероятность, равную приращению интегральной функции на этом промежутке, т.е.. Например, для дискретной случайной величины, заданной в примере 26, имеем:


Таким образом, график интегральной функции рассматриваемой функции представляет собой объединение двух лучей и трёх отрезков, параллельных оси Ох.

Пример 27 . Непрерывная случайная величина Х задана интегральной функцией распределения вероятностей

.

Построить график интегральной функции и найти вероятность того, что в результате испытания случайная величина Х примет значение в интервале (0,5;1,5).

Решение. На интервале
графиком является прямая у = 0. На промежутке от 0 до 2 – парабола, заданная уравнением
. На интервале
графиком является прямая у = 1.

Вероятность того, что случайная величина Х в результате испытания примет значение в интервале (0,5;1,5) находим по формуле .

Таким образом, .

Свойства интегральной функции распределения вероятностей:

Закон распределения непрерывной случайной величины удобно задавать с помощью другой функции, а именно, функции плотности вероятности
.

Вероятность того, что значение, принятое случайной величиной Х, попадает в интервал
, определяется равенством
.

График функции называется кривой распределения . Геометрически вероятность попадания случайной величины Х в промежуток равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми
.

Свойства функции плотности вероятности :


9.1. Числовые характеристики непрерывных случайных величин

Математическое ожидание (средним значением) непрерывной случайной величины Х определяется равенством
.

М(Х) обозначают через а . Математическое ожидание непрерывной случайной величины обладает аналогичными, как и дискретная величина, свойствами:

Дисперсией дискретной случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания, т.е. . Для непрерывной случайной величины дисперсия определяется формулой
.

Дисперсия обладает свойствами:


Последнее свойство очень удобно применять для нахождения дисперсии непрерывной случайной величины.

Аналогично вводится и понятие среднего квадратического отклонения. Средним квадратическим отклонением непрерывной случайной величины Х называется корень квадратный из дисперсии, т.е.
.

Пример 28 . Непрерывнаяслучайная величина Х задана функцией плотности вероятностей
в интервале (10;12), вне этого промежутка значение функции равно 0. Найти 1) значение параметра а, 2) математическое ожидание М(Х), дисперсию
, среднее квадратическое отклонение, 3) интегральную функцию
и построить графики интегральной и дифференциальной функций.

1). Для нахождения параметра а используем формулу
. Получим . Таким образом,
.

2). Для нахождения математического ожидания используем формулу: , откуда следует, что
.

Дисперсию будем находить по формуле:
, т.е. .

Найдём среднее квадратическое отклонение по формуле: , откуда получим, что
.

3). Интегральная функция выражается через функцию плотностей вероятностей следующим образом:
. Следовательно,
при
, = 0 при
и = 1 при
.

Графики этих функций представлены на рис. 4. и рис. 5.

Рис.4 Рис.5.

9.2. Равномерное распределение вероятностей непрерывной случайной величины

Распределение вероятностей непрерывной случайной величины Х равномерно на интервале , если её плотность вероятности постоянна на этом интервале и равна нулю вне этого интервала, т.е. . Легко показать, что в этом случае
.

Если интервал
содержится в интервале , то
.

Пример 29. Событие, состоящее из мгновенного сигнала, должно произойти между часом дня и пятью часами. Время ожидания сигнала есть случайная величина Х. Найти вероятность того, что сигнал будет зафиксирован между двумя и тремя часами дня.

Решение. Случайная величина Х имеет равномерное распределение, и по формуле найдём, что вероятность того, что сигнал будет между 2 и 3 часами дня, равна
.

В учебной и другой литературе часто обозначают в литературе через
.

9.3. Нормальное распределение вероятностей непрерывной случайной величины

Распределение вероятностей непрерывной случайной величины называется нормальным, если её закон распределения вероятностей определяется плотностью вероятности
. Для таких величин а – математическое ожидание,
- среднее квадратическое отклонение.

Теорема. Вероятность попадания нормально распределённой непрерывной случайной величины в заданный интервал
определяется по формуле
, где
- функция Лапласа.

Следствием этой теоремы является правило трёх сигм , т.е. практически достоверно, что нормальна распределённая, непрерывная случайная величина Х принимает свои значения в интервале
. Это правило выводимо из формулы
, являющейся частным случаем сформулированной теоремы.

Пример 30. Срок работы телевизора представляет собой случайную величину Х, подчинённую нормальному закону распределения, с гарантийным сроком 15 лет и средним квадратическим отклонением, равным 3 годам. Найти вероятность того, что телевизор проработает от 10 до 20 лет.

Решение. По условию задачи математическое ожидание а = 15, среднее квадратическое отклонение .

Найдём . Таким образом, вероятность работы телевизора от 10 до 20 лет более 0,9.

9.4.Неравенство Чебышева

Имеет место лемма Чебышева . Если случайная величина Х принимает только неотрицательные значения и имеет математическое ожидание, то для любого положительного в
.

Учитывая, что , как сумма вероятностей противоположных событий, получим, что
.

Теорема Чебышева. Если случайная величина Х имеет конечную дисперсию
и математическое ожидание М(Х), то для любого положительного справедливо неравенство

.

Откуда следует, что
.

Пример 31. Изготовлена партия деталей. Среднее значение длины деталей равна100 см., а среднее квадратическое отклонение равно 0,4см. Оценить снизу вероятность того, что длина наудачу взятой детали окажется не менее 99см. и не более 101см.

Решение. Дисперсия . Математическое ожидание равно 100. Следовательно, для оценки снизу вероятности рассматриваемого события
применим неравенство Чебышева , в котором
, тогда
.

10. Элементы математической статистики

Статистической совокупностью называют множество однородных предметов или явлений. Число п элементов этого множества называется объёмом совокупности. Наблюдаемые значения признака Х называют вариантами . Если варианты расположены в возрастающей последовательности, то получен дискретный вариационный ряд . В случае группировки вариант по интервалам получается интервальный вариационный ряд . Под частотой т значения признака понимают число членов совокупности с данной вариантой.

Отношение частоты к объёму статистической совокупности называют относительной частотой признака:
.

Соотношение между вариантами вариационного ряда и их частотами называют статистическим распределением выборки . Графическим представлением статистического распределения может служить полигон частот.

Пример 32. Путём опроса 25 студентов первого курса получены следующие данные об их возрасте:
. Составить статистическое распределение студентов по возрасту, найти размах варьирования, построить полигон частот и составить ряд распределения относительных частот.

Решение. Используя данные, полученные при опросе, составим статистическое распределение выборки

Размах выборки варьирования равен 23 – 17 = 6. Для построения полигона частот, строят точки с координатами
и последовательно их соединяют.

Ряд распределения относительных частот имеет вид:

10.1.Числовые характеристики вариационного ряда

Пусть выборка задана рядом распределения частот признака Х:

Сумма всех частот равна п.

Средним арифметическим выборки называют величину
.

Дисперсией или мерой рассеяния значений признака Х по отношению к его среднему арифметическому называют величину
. Средним квадратическим отклонением называют корень квадратный из дисперсии, т.е. .

Отношение среднего квадратического отклонения к среднему арифметическому выборки, выраженное в процентах, называют коэффициентом вариации :
.

Эмпирической функцией распределения относительных частот называют функцию, определяющую для каждого значения относительную частоту события
, т.е.
, где - число вариант, меньших х , а п – объём выборки.

Пример 33. В условиях примера 32 найти числовые характеристики
.

Решение. Найдём среднее арифметическое выборки по формуле , тогда .

Дисперсия признака Х находится по формуле: , т. е. . Среднее квадратическое отклонение выборки равно
. Коэффициент вариации равен
.

10.2. Оценка вероятности по относительной частоте. Доверительный интервал

Пусть проводится п независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна р . В этом случае вероятность того, что относительная частота будет отличаться от вероятности появления события А в каждом испытании по абсолютной величине не больше, чем на , приближённо равна удвоенному значению интегральной функции Лапласа:
.

Интервальной оценкой называют такую оценку, которая определяется двумя числами, являющимися концами интервала, покрывающего оцениваемый параметр статистической совокупности.

Доверительным интервалом называют интервал, который с заданной доверительной вероятностью покрывает оцениваемый параметр статистической совокупности. Рассматривая формулу , в которой заменим неизвестную величину р на её приближённое значение , полученное по данным выборки, получим:
. Эта формула служит для оценки вероятности по относительной частоте. Числа
и
называют нижней и соответственно верхней доверительными границами , - предельной погрешностью для данной доверительной вероятности
.

Пример 34 . Заводской цех выпускает электрические лампочки. При проверке 625 ламп оказалось 40 бракованных. Найти с доверительной вероятностью 0,95 границы, в которых заключён процент брака лампочек, выпускаемых заводским цехом.

Решение. По условию задачи . Используем формулу
. По таблице 2 приложения находим значение аргумента, пи котором значение интегральной функции Лапласа равно 0,475. Получим, что
. Таким образом, . Следовательно, можно сказать с вероятностью 0,95, что доля выпускаемого брака цехом высока, а именно, изменяется в пределах от 6,2% до 6,6%.

10.3. Оценка параметров в статистике

Пусть количественный признак Х всей исследуемой совокупности (генеральной совокупности) имеет нормальное распределение.

Если среднее квадратическое отклонение известно, то доверительный интервал, покрывающий математическое ожидание а

, где п – объём выборки, - выборочная средняя арифметическая, t – аргумент интегральной функции Лапласа, при котором
. При этом число
называют точностью оценки.

Если среднее квадратическое отклонение неизвестно, то по данным выборки можно построить случайную величину, имеющую распределение Стьюдента с п – 1 степенями свободы, которое определяется только одним параметром п и не зависит от неизвестных а и . Распределение Стьюдента даже для малых выборок
даёт вполне удовлетворительные оценки. Тогда доверительный интервал, покрывающий математическое ожидание а этого признака с заданной доверительной вероятностью , находится из условия

, где S – исправленное среднее квадратическое, - коэффициент Стьюдента, находится по данным
из таблицы 3 приложения.

Доверительный интервал, покрывающий среднее квадратическое отклонение этого признака с доверительной вероятностью , находится по формулам: и , где
находится по таблице значений q по данным .

10.4. Статистические методы изучения зависимостей между случайными величинами

Корреляционной зависимостью У от Х называют функциональную зависимость условной средней от х. Уравнение
представляет уравнение регрессии У на Х, а
- уравнение регрессии Х на У.

Корреляционная зависимость может быть линейной и криволинейной. В случае линейной корреляционной зависимости уравнение прямой линии регрессии имеет вид:
, где угловой коэффициент а прямой линии регрессии У на Х называется выборочным коэффициентом регрессии У на Х и обозначается
.

При малых выборках данные не группируются, параметры
находятся по методу наименьших квадратов из системы нормальных уравнений:

, где п – число наблюдений значений пар взаимосвязанных величин.

Выборочный линейный коэффициент корреляции показывает тесноту связи У и Х. Коэффициент корреляции находится по формуле
, причём
, а именно:


Выборочное уравнение прямой линии регрессии У на Х имеет вид:

.

При большом числе наблюдений признаков Х и У составляется корреляционная таблица с двумя входами, при этом одно и то же значение х наблюдается раз, одно и то же значение у наблюдается раз, одна и та же пара
наблюдается раз.

Пример 35. Дана таблица наблюдений признаков Х и У.

Найти выборочное уравнение прямой линии регрессии У на Х.

Решение. Связь между изучаемыми признаками может быть выражена уравнением прямой линии регрессии У на Х: . Для вычисления коэффициентов уравнения составим расчётную таблицу:

№ наблюдения

Непрерывные случайные величины - это величины, возможные значения которых образуют некоторый конечный или бесконечный интервал.

Интегральная функция распределения есть закон распределения случайной величины, с помощью которого можно задавать как дискретную, так и непрерывную случайную величину.

Интегральной функцией распределения называют функцию F(x), определяющую для каждого значения x вероятность того, что случайная величина X примет значение меньшее х, т.е. .

Геометрически это означает: F(x) есть вероятность того, что случайная величина Х примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Случайная величина называется непрерывной, если ее интегральная функция F(X) непрерывно дифференцируема.

Свойства интегральной функции.

1 0 . Значения интегральной функции принадлежат отрезку от 0 до1, то есть .

2 0 . Интегральная функция есть функция неубывающая, то есть, если , то .

Следствия:

1. Вероятность того, что СВ примет значение, заключенное в интервале (а;в) равна приращению интегральной функции на этом интервале:

2. Вероятность того, что НСВ примет одно конкретное значение равна 0.

3. Если возможные значения НСВ расположены на всей числовой прямой, то справедливы следующие предельные отношения:

и

График интегральной функции.

График интегральной функции строят, исходя из ее свойств. По первому свойству , график расположен между прямыми y=0 и y=1. из второго свойства следует, что - функция возрастающая, а значит ее график на промежутке (а,в) поднимается вправо и вверх. По 3 0 свойству при , а при (рис.5).

Рисунок 5. График интегральной функции.

Пример 31. ДСВ задана законом распределения

0,2 0,5 0,3

Найти интегральную функцию распределения и построить ее график.

1. Если , то по 3 0 .

2. Если , .

3. Если , .

4. Если , то по 3 0 .

Построим график интегральной функции ДСВ(Ч) (рис.6).

Рисунок 6. График интегральной функции для дискретной случайной величины.

Дифференциальная функция распределения НСВ.

Существует еще один способ задания НСВ, используя дифференциальную функцию распределения.

Дифференциальной функцией распределения называется функция равная первой производной интегральной функции, то есть .

Дифференциальную функцию распределения по-другому называют плотностью распределения вероятностей.

Теорема 17. Вероятность того, что НСВ Х примет значение, принадлежащее промежутку (а,в), равна определенному интегралу от дифференциальной функции, взятому в пределах от а до в.

Пример 32. НСВ задана интегральной функцией распределения

Найти дифференциальную функцию распределения и вероятность попадания НСВ в промежуток .

Решение.

Свойства дифференциальной функции распределения.

1 0 . Дифференциальная функция есть функция неотрицательная: .

2 0 . (Условие нормировки.) Несобственный интеграл от дифференциальной функции в пределах от -∞ до +∞ равен 1, то есть:

В частности, если все возможные значения НСВ принадлежат интервалу (а, в), то

Пример 33.

Найти значение параметра а.

Заметим, что зная дифференциальную функцию распределения, можно найти интегральную функцию по формуле:

.

Пример 34. НСВ задана дифференциальной функцией распределения:

найти интегральную функцию распределения.

Решение.

1.

3.

Числовые характеристики НСВ.

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

По своей физической природе случайные величины могут быть детерминированными и случайными.

Дискретной называют случайную величину, отдельные значения которой можно перенумеровать (число изделий, количество деталей – бракованных и годных и т.п.).

Непрерывной называют случайную величину, возможные значения которой заполняют некоторый промежуток (отклонение размера изготовленной детали от номинала, погрешность измерения, величина отклонения формы детали, высота микронеровностей и т.п.).

Случайная величина не может характеризоваться каким-то одним значением. Для неё необходимо указать множество возможных значений и вероятностные характеристики, заданные на этом множестве.

В том случае, если случайное событие выражается в виде числа, можно говорить о случайной величине. Случайной называют величину, которая в результате испытания примет одно возможное значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Выпадение некоторого значения случайной величины Х это случайное событие: Х = х i . Среди случайных величин выделяют дискретные и непрерывные случайные величины.

Дискретной случайной величиной называется случайная величина, которая в результате испытания принимает отдельные значения с определёнными вероятностями. Число возможных значений дискретной случайной величины может быть конечным и бесконечным. Примеры дискретной случайной величины: запись показаний спидометра или измеренной температуры в конкретные моменты времени.

Непрерывной случайной величиной называют случайную величину, которая в результате испытания принимает все значения из некоторого числового промежутка. Число возможных значений непрерывной случайной величины бесконечно. Пример непрерывной случайной величины: измерение скорости перемещения любого вида транспорта или температуры в течение конкретного интервала времени.

Любая случайная величина имеет свой закон распределения вероятностей и свою функцию распределения вероятностей. Прежде, чем дать определение функции распределения, рассмотрим переменные, которые её определяют. Пусть задано некоторое х действительное число и получена случайная величина X , при этом x > X . Требуется определить вероятность того, что случайная величина Х будет меньше этого фиксированного значения х .

Функцией распределения случайной величины Х называется функция F(х) , определяющая вероятность того, что случайная величина Х в результате испытания примет значение меньшее значения х, то есть:

Случайная величина характеризуется в теории вероятностей законом ее распределения . Этот закон устанавливает связь между возможными значениями случайной величины и соответствующими этим значениям вероятностям их появления. Существует две формы описания закона распределения случайной величины - дифференциальная и интегральная . Причем, в метрологии в основном используется дифференциальная форма - закон распределения плотности вероятностей случайной величины.

Дифференциальный закон распределения характеризуетсяплотностью распределения вероятностей f(x) случайной величиных . Вероятность Р попадания случайной величины в интервал от х 1 до х 2 при этом дается формулой:

Графически эта вероятность представляет собой отношение площади под кривой f(x) в интервале от х 1 до х 2 к общей площади, ограниченной всей кривой распределения. Как правило, площадь под всей кривой распределения вероятностей нормируют на единицу.


В данном случае представлено распределение непрерывной случайной величины. Кроме них существуют и дискретные случайные величины, принимающие ряд определенных значений, которые можно пронумеровать.

Интегральный закон распределения случайной величины представляет собой функцию F(x), определяемую формулой

Вероятность, что случайная величина будет меньше х 1 дается значением функции F(х) при х = х 1:

Хотя закон распределения случайных величин является их полной вероятностной характеристикой, нахождение этого закона является довольно трудной задачей и требует проведения многочисленных измерений. Поэтому на практике для описания свойств случайной величины используют различные числовые характеристики распределений . К ним относятся моменты слу-чайных величин: начальные и центральные , которые представляют собой некоторые средние значения . При этом если усредняются величины, отсчитываемые от начала координат, то моменты называются начальными , а если от центра распределения – то центральными .


Плотностью распределения вероятностей Х называют функцию f(x) – первую производную от функции распределения F(x) :

Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима.

Плотность распределения вероятностей f(x) – называют дифференциальной функцией распределения:

Свойство 1. Плотность распределения - величина неотрицательная:

Свойство 2. Несобственный интеграл от плотности распределения в пределах от до равен единице:

Пример 1.25. Дана функция распределения непрерывной случайной величины Х:

f(x) .

Решение: Плотность распределения равна первой производной от функции распределения:

1. Дана функция распределения непрерывной случайной величины Х:

Найти плотность распределения.

2. Задана функция распределения непрерывной случайной величины Х:

Найти плотность распределения f(x).

1.3. Числовые характеристики непрерывной случайной

величины

Математическое ожидание непрерывной случайной величины Х , возможные значения которой принадлежат всей оси Ох , определяется равенством:

Предполагается, что интеграл сходится абсолютно.

a,b ), то:

f(x) – плотность распределения случайной величины.

Дисперсия непрерывной случайной величины Х , возможные значения которой принадлежат всей оси, определяется равенством:

Частный случай. Если значения случайной величины принадлежат интервалу (a,b ), то:

Вероятность того, что Х примет значения, принадлежащие интервалу (a,b ), определяется равенством:

.

Пример 1.26. Непрерывная случайная величина Х

Найти математическое ожидание, дисперсию и вероятность попадание случайной величины Х в интервале (0;0,7).

Решение: Случайная величина распределена на интервале (0,1). Определим плотность распределения непрерывной случайной величины Х :

а) Математическое ожидание :

б) Дисперсия

в)

Задания для самостоятельной работы:

1. Случайная величина Х задана функцией распределения:

M(x) ;

б) дисперсию D(x) ;

Х в интервал (2,3).

2. Случайная величина Х

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал (1;1,5).

3. Случайная величина Х задана интегральной функцией распределения:

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал .

1.4. Законы распределения непрерывной случайной величины

1.4.1. Равномерное распределение

Непрерывная случайная величина Х имеет равномерное распределение на отрезке [a,b ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, а вне его равна нулю, т.е.:

Рис. 4.

; ; .

Пример 1.27. Автобус некоторого маршрута движется равномерно с интервалом 5 минут. Найти вероятность того, что равномерно распределенная случайная величина Х – время ожидания автобуса составит менее 3 минут.

Решение: Случайная величина Х – равномерно распределена на интервале .

Плотность вероятности: .

Для того чтобы время ожидания не превысило 3 минут, пассажир должен появиться на остановке в интервале от 2 до 5 минут после ухода предыдущего автобуса, т.е. случайная величина Х должна попасть в интервал (2;5). Т.о. искомая вероятность:

Задания для самостоятельной работы:

1. а) найти математическое ожидание случайной величины Х распределенной равномерно в интервале (2;8);

б) найти дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной равномерно в интервале (2;8).

2. Минутная стрелка электрических часов перемещается скачком в конце каждом минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 секунд.

1.4.2. Показательное (экспоненциальное) распределение

Непрерывная случайная величина Х распределена по показательному закону, если ее плотность вероятности имеет вид:

где – параметр показательного распределения.

Таким образом

Рис. 5.

Числовые характеристики:

Пример 1.28. Случайная величина Х – время работы электролампочки - имеет показательное распределение. Определить вероятность того, что время работы лампочки будет не меньше 600 часов, если среднее время работы - 400 часов.

Решение: По условию задачи математическое ожидание случайной величины Х равно 400 часам, следовательно:

;

Искомая вероятность , где

Окончательно:


Задания для самостоятельной работы:

1. Написать плотность и функцию распределения показательного закона, если параметр .

2. Случайная величина Х

Найти математическое ожидание и дисперсию величины Х .

3. Случайная величина Х задана функцией распределения вероятностей:

Найти математическое ожидание и среднее квадратическое отклонение случайной величины.

1.4.3. Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины Х , плотность которого имеет вид:

где а – математическое ожидание, – среднее квадратическое отклонение Х .

Вероятность того, что Х примет значение, принадлежащее интервалу :

, где

– функция Лапласа.

Распределение, у которого ; , т.е. с плотностью вероятности называется стандартным.

Рис. 6.

Вероятность того, что абсолютная величина отклонена меньше положительного числа :

.

В частности, при а= 0 справедливо равенство:

Пример 1.29. Случайная величина Х распределена нормально. Среднее квадратическое отклонение . Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Решение: .


Задания для самостоятельной работы:

1. Написать плотность вероятности нормального распределения случайной величины Х , зная, что M(x)= 3, D(x)= 16.

2. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (15;20).

3. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением мм и математическим ожиданием а= 0. Найти вероятность того, что из 3 независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4 мм.

4. Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10 г.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама