THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама
Рентген костей является одним из самых распространенных исследований, проводимых в современной медицинской практике. Большинство людей знакомы с данной процедурой, поскольку возможности для применения данного метода очень обширны. Список показаний для рентгена костей включает большое количество заболеваний. Одни лишь травмы и переломы конечностей требуют неоднократного проведения рентгеновского исследования.

Рентген костей проводится с использованием различной аппаратуры, также существует разнообразие методов данного исследования. Применение вида рентгеновского исследования зависит от конкретной клинической ситуации, возраста пациента, основного заболевания и сопутствующих факторов. Лучевые методы диагностики являются незаменимыми в диагностике заболеваний костной системы и играют главную роль в постановке диагноза.

Существуют следующие виды рентгеновского исследования костей:

  • пленочная рентгенография;
  • цифровая рентгенография;
  • рентгеновская денситометрия;
  • рентген костей с использованием контрастных веществ и некоторые другие методы.

Что такое рентген?

Рентген является одним из видов электромагнитного излучения. Данный вид электромагнитной энергии был открыт в 1895 году. К электромагнитному излучению также относится солнечный свет, а также свет от любого искусственного освещения. Рентгеновские лучи используются не только в медицине, а встречаются также и в обычной природе. Около 1% излучения Солнца доходит до Земли в виде рентгеновских лучей, что формирует естественный радиационный фон.

Искусственное получение рентгеновских лучей стало возможным благодаря Вильгельму Конраду Рентгену, в честь которого они и названы. Он также первым обнаружил возможность их применения в медицине для «просвечивания» внутренних органов, в первую очередь - костей. Впоследствии данная технология развивалась, появлялись новые способы применения рентгеновского излучения, снижалась доза облучения.

Одним из негативных свойств рентгеновского излучения является его способность вызывать ионизацию в веществах, через которые оно проходит. Из-за этого рентгеновское излучение названо ионизирующим. В больших дозах рентген может привести к лучевой болезни . Первые десятилетия после открытия рентгеновских лучей данная особенность была неизвестной, что приводило к заболеваниям как у врачей, так и у пациентов. Однако сегодня доза рентгеновского излучения тщательно контролируется и можно с уверенностью говорить о том, что вредом от рентгеновского излучения можно пренебречь.

Принцип получения рентгеновского снимка

Для получения рентгеновского снимка необходимы три компонента. Первый из них – это источник рентгеновского излучения. Источником рентгеновского излучения служит рентгеновская трубка. В ней под действием электрического тока происходит взаимодействие определенных веществ и высвобождение энергии, из которой большая часть выделяется в виде тепла, а незначительная часть – в виде рентгеновского излучения. Рентгеновские трубки находятся в составе всех рентгеновских установок и требуют значительного охлаждения.

Вторым компонентом для получения снимка является исследуемый объект. В зависимости от его плотности происходит частичное поглощение рентгеновских лучей. Благодаря разнице тканей человеческого организма за пределы тела проникает рентгеновское излучение различной мощности, что оставляет на снимке различные пятна. Там, где рентгеновское излучение было поглощено в большей степени, остаются тени, а там где оно прошло практически неизменно – образуются просветления.

Третьим компонентом для получения рентгеновского снимка является приемник рентгеновского излучения. Он может быть пленочным или цифровым (рентгеночувствительный датчик ). Наиболее часто сегодня используется в качестве приемника рентгеновская пленка. Она обработана специальной эмульсией с содержанием серебра, которая изменяется при попадании на нее рентгеновских лучей. Зоны просветления на снимке имеют темный оттенок, а тени – белый оттенок. Здоровые кости имеют высокую плотность и оставляют равномерную тень на снимке.

Цифровой и пленочный рентген костей

Первые методики рентгеновского исследования подразумевали использование в качестве принимающего элемента фоточувствительного экрана или пленки. Сегодня рентгеновская пленка является наиболее часто используемым приемником рентгеновских лучей. Однако уже в ближайшие десятилетия цифровая рентгенография полностью заменит пленочную, так как обладает рядом неоспоримых преимуществ. В цифровой рентгенографии принимающим элементом являются сенсоры, чувствительные к рентгеновскому излучению.

Цифровая рентгенография обладает следующими преимуществами по сравнению с пленочной рентгенографией:

  • возможность уменьшить дозу облучения благодаря более высокой чувствительности цифровых датчиков;
  • увеличение точности и разрешения снимка;
  • простота и скорость получения снимка, отсутствие необходимости обрабатывать фоточувствительную пленку;
  • легкость хранения и обработки информации;
  • возможность быстрой передачи информации.
Единственным недостатком цифровой рентгенографии является несколько более высокая стоимость аппаратуры по сравнению с обычной рентгенографией. Из-за этого не во всех медицинских центрах можно найти данное оборудование. По возможности пациентам рекомендуется выполнять именно цифровой рентген, так как он дает более полную диагностическую информацию и вместе с тем менее вреден.

Рентген костей с контрастным веществом

Рентгенография костей конечностей может быть выполнена с применением контрастных веществ. В отличие от других тканей организма, кости обладают высокой естественной контрастностью. Поэтому контрастные вещества применяются для уточнения образований, смежных с костями – мягких тканей, суставов, сосудов. Данные техники рентгена применяются не так часто, однако в некоторых клинических ситуациях они являются незаменимыми.

Существуют следующие рентгеноконтрастные методики исследования костей:

  • Фистулография. Данная методика подразумевает заполнение свищевых ходов контрастными веществами (йодолипол, сульфат бария ). Свищи образуются в костях при воспалительных заболеваниях, таких как остеомиелит . После исследования вещество удаляют из свищевого хода с помощью шприца.
  • Пневмография. Данное исследование подразумевает введение газа (воздух, кислород, закись азота ) объемом около 300 кубических сантиметров в мягкие ткани. Пневмография выполняется, как правило, при травматических повреждениях, совмещенных с размозжением мягких тканей, оскольчатых переломах.
  • Артрография. Данный метод включает заполнение полости сустава жидким рентгеноконтрастным препаратом. Объем контрастного вещества зависит от объема полости сустава. Наиболее часто артрография выполняется на коленном суставе. Данная методика позволяет оценить состояние суставных поверхностей костей, включенных в сустав.
  • Ангиография костей. Данный вид исследования подразумевает введение контрастного вещества в сосудистое русло. Исследование сосудов костей применяется при опухолевых образованиях, для уточнения особенностей ее роста и кровоснабжения. В злокачественных опухолях диаметр и расположение сосудов являются неравномерными, количество сосудов обычно больше, чем в здоровых тканях.
Рентген костей должен быть выполнен с целью точной постановки диагноза. В большинстве случаев использование контрастного вещества позволяет получить более точную информацию и оказать более качественную помощь пациенту. Однако необходимо учитывать, что использование контрастных веществ имеет некоторые противопоказания и ограничения. Техника использования контрастных веществ требует времени и наличия опыта у врача-рентгенолога.

Рентген и компьютерная томография (КТ ) костей

Компьютерная томография – рентгеновский метод, который обладает повышенной точностью и информативностью. На сегодняшний день компьютерная томография представляет собой самый лучший метод исследования костной системы. С помощью КТ можно получить трехмерное изображение любой кости в организме или срезы через любую кость во всех возможных проекциях. Метод является точным, но наряду с этим создает высокую лучевую нагрузку.

Преимуществами КТ перед стандартной рентгенографией являются:

  • высокое разрешение и точность метода;
  • возможность получения любой проекции, в то время как рентген осуществляется обычно не более чем в 2 – 3 проекциях;
  • возможность трехмерной реконструкции исследуемой части тела;
  • отсутствие искажений, соответствие линейных размеров;
  • возможность одновременного обследования костей, мягких тканей и сосудов;
  • возможность проведения обследования в реальном времени.
Компьютерная томография проводится в случаях, когда необходимо диагностировать такие сложные заболевания как остеохондроз , межпозвоночные грыжи , опухолевые заболевания. В случаях, когда диагностика не представляет особых затруднений, проводится обычная рентгенография. Необходимо учитывать высокую лучевую нагрузку данного метода, из-за чего КТ не рекомендуется проводить чаще, чем раз в год.

Рентген костей и магнитно-резонансная томография (МРТ )

Магнитно-резонансная томография (МРТ ) – сравнительно новый метод диагностики. МРТ позволяет получить точное изображение внутренних структур организма во всех возможных плоскостях. С помощью средств компьютерного моделирования МРТ дает возможность выполнить трехмерную реконструкцию органов и тканей человека. Основным преимуществом МРТ является полное отсутствие лучевой нагрузки.

Принцип работы магнитно-резонансного томографа заключается в придании атомам, из которых построен организм человека, магнитного импульса. После этого считывается энергия, освобожденная атомами при возвращении к исходному состоянию. Одним из ограничений данного метода является невозможность применения при наличии в организме металлических имплантатов, кардиостимуляторов .

При выполнении МРТ обычно проводится измерение энергии атомов водорода. Водород в организме человека встречается наиболее часто в составе соединений воды. В костях вода содержится в гораздо меньших объемах, чем в других тканях организма, поэтому при исследовании костей МРТ дает менее точные результаты, чем при исследовании других областей организма. В этом МРТ уступает КТ, однако все равно превышает по точности обычную рентгенографию.

МРТ является наилучшим методом диагностики опухолей костей, а также метастазов костных опухолей в отдаленных областях. Одним из серьезных недостатков данного метода является высокая стоимость и большие временные затраты на исследование (30 минут и больше ). Все это время пациент должен занимать неподвижное положение в магнитно-резонансном томографе. Данный аппарат выглядит как тоннель закрытой конструкции, из-за чего у некоторых людей появляется дискомфорт.

Рентген и денситометрия костей

Исследование структуры костной ткани проводится при ряде заболеваний, а также при старении организма. Наиболее часто исследование структуры костей проводится при таком заболевании как остеопороз . Снижение содержания минеральных веществ в костях приводит к их хрупкости, риску переломов, деформациям и повреждениям соседних структур.

Рентгеновский снимок позволяет оценить структуру костей лишь субъективно. Для определения количественных параметров плотности кости, содержания минеральных веществ в ней используется денситометрия. Процедура проходит быстро и безболезненно. В то время как пациент лежит неподвижно на кушетке, врач исследует с помощью специального датчика определенные участки скелета. Наиболее важными являются данные денситометрии головки бедренной кости и позвонков.

Существуют следующие виды денситометрии костей:

  • количественная ультразвуковая денситометрия;
  • рентгеновская абсорбциометрия;
  • количественная магнитно-резонансная томография;
  • количественная компьютерная томография.
Денситометрия рентгеновского типа основана на измерении поглощения рентгеновского луча костью. Если кость плотная, то она задерживает большую часть рентгеновского излучения. Данный метод очень точный, но обладает ионизирующим эффектом. Альтернативные методы денситометрии (ультразвуковая денситометрия ) являются более безопасными, но и менее точными.

Денситометрия показана в следующих случаях:

  • остеопороз;
  • зрелый возраст (старше 40 – 50 лет );
  • менопауза у женщин;
  • частые переломы костей;
  • заболевания позвоночника (остеохондроз, сколиоз );
  • любые костные повреждения;
  • малоподвижный образ жизни (гиподинамия ).

Показания и противопоказания рентгена костей скелета

Рентген костей скелета имеет обширный список показаний. Различные заболевания могут быть характерны для разных возрастов, однако травмы или опухоли костей могут встречаться в любом возрасте. Для диагностики заболеваний костной системы именно рентген является самым информативным методом. Рентгеновский метод обладает также некоторыми противопоказаниями, которые, впрочем, являются относительными. Однако следует помнить, что рентген костей может быть опасен и принести вред при слишком частом использовании.

Показания к рентгену костей

Рентгеновское исследование является чрезвычайно распространенным и информативным исследованием для костей скелета. Кости недоступны для прямого обследования, однако по рентгеновскому снимку можно получить практически всю необходимую информацию о состоянии костей, об их форме, размерах и структуре. Однако рентген костей в силу выделения ионизирующего излучения не может быть выполнен слишком часто и по любому поводу. Показания для рентгена костей определены достаточно точно и основаны на жалобах и симптомах заболеваний пациентов.

Рентген костей показан в следующих случаях:

  • травматические повреждения костей с выраженным болевым синдромом, деформацией мягких тканей и костей;
  • вывихи и другие повреждения суставов;
  • аномалии развития костей у детей;
  • отставание детей в росте;
  • ограничение подвижности в суставах;
  • боль в покое или при движениях любой части тела;
  • увеличение костей в объеме, при подозрении на опухоль;
  • подготовка к оперативному лечению;
  • оценка качества проведенного лечения (переломы, трансплантации и др. ).
Список заболеваний скелета, которые выявляют с помощью рентгена, очень обширен. Это связано с тем, что заболевания костной системы обычно протекают бессимптомно и выявляются только после рентгеновского исследования. Некоторые заболевания, такие как остеопороз, являются возрастными и практически неизбежны при старении организма.

Рентген костей в большинстве случаев позволяет провести дифференциацию между перечисленными заболеваниями, благодаря тому, что каждое из них обладает достоверными рентгенологическими признаками. В сложных случаях, особенно перед проведением хирургических операций, показано применение компьютерной томографии. Врачи предпочитают использовать данное исследование, так как оно наиболее информативно и обладает наименьшим количеством искажений по сравнению с анатомическими размерами костей.

Противопоказания к рентгеновскому исследованию

Противопоказания к рентгеновскому исследованию связаны с наличием ионизирующего эффекта у рентгеновского излучения. Вместе с тем все противопоказания к исследованию являются относительными, так как ими можно пренебречь в экстренных случаях, таких как переломы костей скелета. Однако при возможности следует ограничить количество рентгеновских исследований и не проводить их без надобности.

К относительным противопоказаниям рентгеновского исследования относятся:

  • наличие металлических имплантатов в теле;
  • острые или хронические психические заболевания;
  • тяжелое состояние пациента (массивная кровопотеря, бессознательное состояние, пневмоторакс );
  • первый триместр беременности ;
  • детский возраст (до 18 лет ).
Рентген с применением контрастных веществ противопоказан в следующих случаях:
  • аллергические реакции на компоненты контрастных веществ;
  • эндокринные нарушения (заболевания щитовидной железы );
  • тяжелые заболевания печени и почек ;
Благодаря тому, что доза облучения в современных рентгеновских установках снижается, рентгеновский метод становится все более безопасным и позволяет снять ограничения по его применению. В случае сложных травм рентген проводится практически сразу, для того чтобы как можно раньше начать лечение.

Дозы облучения при различных методах рентгеновского исследования

Современная лучевая диагностика придерживается строгих норм безопасности. Рентгеновское излучение измеряется с помощью специальных дозиметров, а рентгеновские установки проходят специальную сертификацию о соответствии нормам радиологического облучения. Дозы облучения неодинаковы для разных методов исследования, а также для различных анатомических областей. Единицей измерения дозы облучения является миллиЗиверт (мЗв ).

Дозы облучения при различных методах рентгена костей

Как видно из приведенных данных, наибольшую рентгеновскую нагрузку несет компьютерная томография. Вместе с тем, компьютерная томография является самым информативным методом исследования костей на сегодняшний день. Также можно сделать вывод о большом преимуществе цифровой рентгенографии перед пленочной, поскольку рентгеновская нагрузка снижается от 5 до 10 раз.

Как часто можно делать рентген?

Рентгеновское излучение несет определенную опасность человеческому организму. Именно по этой причине все излучение, которое было получено с медицинской целью, должно быть отражено в медицинской карте больного. Такой учет должен вестись с целью соблюдения годовых норм, ограничивающих возможное количество рентгеновских исследований. Благодаря применению цифровой рентгенографии их количество достаточно для решения практически любых медицинских задач.

Ежегодное ионизирующее излучение, которое получает организм человека из окружающей среды (природный фон ), составляет от 1 до 2 мЗв. Предельно допустимая доза рентгеновского излучения составляет 5 мЗв в год или по 1 мЗв в течение каждого из 5 лет. В большинстве случаев данные значения не превышаются, так как доза облучения при однократном исследовании в разы меньше.

Количество рентгеновских исследований, которое можно провести в течение года, зависит от типа исследования и анатомической области. В среднем допускается проведение 1 компьютерной томографии или от 10 до 20 цифровых рентгенографий. Однако надежных данных о том, какое влияние оказывают дозы излучения в 10 – 20 мЗв ежегодно, нет. С уверенностью можно сказать лишь то, что в некоторой мере они повышают риск некоторых мутаций и клеточных нарушений.

Какие органы и ткани страдают от ионизирующего излучения рентгеновских установок?

Способность вызывать ионизацию – одно из свойств рентгеновского излучения. Ионизирующее излучение может привести к спонтанному распаду атомов, клеточным мутациям, сбою в воспроизводстве клеток. Именно поэтому рентгеновское исследование, являющееся источником ионизирующего излучения, требует нормирования и установления пороговых значений доз облучения.

Ионизирующее излучение оказывает наибольшее влияние на следующие органы и ткани:

  • костный мозг , кроветворные органы;
  • хрусталик глаза;
  • эндокринные железы;
  • половые органы;
  • кожа и слизистые оболочки;
  • плод беременной женщины;
  • все органы детского организма.
Ионизирующее излучение в дозе 1000 мЗв вызывает явление острой лучевой болезни. Такая доза попадает в организм только в случае катастроф (взрыв атомной бомбы ). В меньших дозах ионизирующее излучение может приводить к преждевременному старению, злокачественным опухолям, катаракте . Несмотря на то, что доза рентгеновского излучения сегодня значительно уменьшилась, в окружающем мире существует большое количество канцерогенных и мутагенных факторов, которые в совокупности могут вызывать такие негативные последствия.

Можно ли делать рентген костей беременным и кормящим мамам?

Любое рентгенологическое исследование не рекомендуется к проведению для беременных женщин. Согласно данным Всемирной Организации Здравоохранения доза в 100 мЗв практически неизбежно вызывает нарушения развития плода или мутации, приводящие к раку . Наибольшие значение имеет первый триместр беременности, так как в этот период происходит наиболее активное развитие тканей плода и формирование органов. При необходимости все рентгенологические исследования переносят на второй и третий триместр беременности. Исследования, проведенные на людях, показали, что рентген, выполненный после 25 недели беременности, не приводит к аномалиям у ребенка.

Для кормящих матерей отсутствуют ограничения в выполнении рентгеновских снимков, так как ионизирующее влияние не влияет на состав грудного молока . Полноценные исследования в данной области не были проведены, поэтому в любом случае врачи рекомендуют кормящим матерям сцедить первую порцию молока при грудном вскармливании . Это поможет перестраховаться и сохранить уверенность в здоровье ребенка.

Рентгеновское исследование костей для детей

Рентгеновское исследование для детей считается нежелательным, поскольку именно в детском возрасте организм наиболее подвержен негативному влиянию ионизирующего излучения. Следует отметить, что именно в детском возрасте происходит наибольшее число травм, которые приводят к необходимости выполнить рентгеновское исследование. Именно поэтому рентген детям выполняется, однако используются различные защитные приспособления, которые позволяют уберечь развивающиеся органы от облучения.

Рентгеновское исследование требуется также при задержке роста детей. В этом случае рентген проводится столько раз, сколько требуется, поскольку в плане лечения включаются рентгенологические исследование через определенный промежуток времени (обычно 6 месяцев ). Рахит, врожденные аномалии скелета, опухоли и опухолеподобные заболевания – все эти заболевания требуют лучевой диагностики и не могут быть заменены другими методами.

Подготовка к рентгену костей

Подготовка к исследованию лежит в основе любого успешного исследования. От этого зависит как качество диагностики, так и результат лечения. Подготовка к рентгеновскому исследованию является довольно простым мероприятием и обычно не создает затруднений. Лишь в некоторых случаях, как, например, рентген таза или позвоночника, выполнение рентгена требует особой подготовки.

Существуют некоторые особенности подготовки к рентгену детей. Родители должны помочь врачам и правильно психологически настроить детей к исследованию. Детям сложно долгое время оставаться неподвижными, также часто они боятся врачей, людей «в белых халатах». Благодаря сотрудничеству между родителями и врачами можно добиться хорошей диагностики и качественного лечения детских заболеваний.

Как получить направление на рентген костей? Где выполняют рентгеновское исследование?

Рентген костей можно выполнить сегодня практически в любом центре, где оказывают медицинскую помощь. Несмотря на то, что сегодня рентгеновское оборудование является широкодоступным, рентгеновское исследование выполняется только по направлению врача. Это связано с тем, что рентген в определенной мере вредит здоровью человека и имеет некоторые противопоказания.

Рентген костей выполняется по направлению врачей разных специальностей. Чаще всего его выполняют в срочном порядке при оказании первой помощи в травматологических отделениях, больницах скорой помощи. В этом случае направление выдает дежурный врач-травматолог , ортопед или хирург . Рентген костей может быть также выполнен по направлению семейных врачей, стоматологов , эндокринологов , онкологов и других врачей.

Рентгеновский снимок костей выполняется в различных медицинских центрах, поликлиниках, стационарах. Для этого в них оборудованы специальные рентгеновские кабинеты, в которых есть все необходимое для такого рода исследований. Рентгенодиагностику проводят врачи-рентгенологи, обладающие специальными знаниями в данной области.

Как выглядит рентгеновский кабинет? Что в нем находится?

Рентгеновский кабинет – место, где выполняют рентгеновские снимки различных частей тела человека. Рентгеновский кабинет должен соответствовать высоким стандартам противорадиационной защиты. В отделке стен, окон и дверей используются специальные материалы, которые обладают свинцовым эквивалентом, который характеризует их способность задерживать ионизирующее излучение. Помимо этого в нем есть дозиметры-радиометры и индивидуальные средства защиты от излучения, такие как фартуки, воротники, перчатки, юбки и другие элементы.

В рентгеновском кабинете должно быть хорошее освещение, в первую очередь искусственное, так как окна имеют небольшие размеры и естественного освещения недостаточно для качественной работы. Основным оборудованием кабинета является рентгеновская установка. Рентгеновские установки бывают различных форм, так как предназначены для различных целей. В крупных медицинских центрах присутствуют все виды рентгеновских установок, однако одновременная работа нескольких из них запрещена.

В современном рентгеновском кабинете присутствуют следующие виды рентгеновских установок:

  • стационарный рентгеновский аппарат (позволяет выполнять рентгенографию, рентгеноскопию, линейную томографию );
  • палатная передвижная рентгеновская установка;
  • ортопантомограф (установка для выполнения рентгена челюстей и зубов );
  • цифровой радиовизиограф.
Помимо рентгеновских установок в кабинете присутствует большое количество вспомогательного инструментария и аппаратуры. Оно также включает оборудование рабочего места врача-рентгенолога и лаборанта, инструменты для получения и обработки рентгеновских снимков.

К дополнительному оборудованию рентгеновских кабинетов относятся:

  • компьютер для обработки и хранения цифровых снимков;
  • оборудование для проявки пленочных снимков;
  • шкафы для сушки пленки;
  • расходные материалы (пленка, фотореактивы );
  • негатоскопы (яркие экраны для просмотра снимков );
  • столы и стулья;
  • шкафы для хранения документации;
  • бактерицидные лампы (кварцевые ) для дезинфекции помещений.

Подготовка к рентгену костей

Ткани организма человека, отличающиеся разной плотностью и химическим составом, по-разному поглощают рентгеновское излучение и благодаря этому обладают характерным рентгенологическим изображением. Кости обладают высокой плотностью и очень хорошей естественной контрастностью, благодаря чему рентген большинства костей выполняется без особой подготовки.

Если человеку предстоит рентгеновское исследование большинства костей, то для этого достаточно вовремя прийти в рентгеновский кабинет. При этом нет ограничений в приеме пищи, жидкости, курении перед рентгенологическим исследованием. Рекомендуется не брать с собой никаких металлических вещей, особенно украшений, поскольку их придется снять перед выполнением исследования. Любые металлические предметы создают помехи на рентгеновском снимке.

Процесс получения рентгеновского снимка не занимает много времени. Однако, для того чтобы снимок получился качественным, пациенту очень важно сохранять неподвижность во время его выполнения. Это особенно актуально для маленьких детей, которые бывают неспокойны. Рентген детям проводится в присутствии родителей. Для детей менее 2 лет рентген проводится в положении лежа, возможно применение специальной фиксации, которая закрепляет положение ребенка на рентгеновском столе.

Одним из серьезных преимуществ рентгена является возможность его применения в экстренных случаях (травмы, падения, дорожно-транспортные происшествия ) без какой-либо подготовки. При этом нет никакой потери в качестве снимков. Если пациент нетранспортабелен или находится в тяжелом состоянии, то существует возможность выполнения рентгена непосредственно в палате, где находится больной.

Подготовка к рентгену костей таза, поясничного и крестцового отдела позвоночника

Рентген костей таза, поясничного и крестцового отдела позвоночника является одним из немногих видов рентгеновских снимков, который требует особой подготовки. Она объясняется анатомической близостью с кишечником . Кишечные газы снижают резкость и контрастность рентгеновского снимка, из-за чего проводится специальная подготовка по очищению кишечника перед данной процедурой.

Подготовка к рентгену костей таза и поясничного отдела позвоночника включает следующие основные элементы:

  • очищение кишечника с помощью слабительных препаратов и клизмы;
  • соблюдение диеты , снижающей образование газов в кишечнике;
  • проведение исследования натощак.
Диета должна начинаться за 2 – 3 дня до исследования. Она исключает мучные изделия, капусту , лук , бобовые, жирные виды мяса и молочные продукты. Кроме того, рекомендуется принимать ферментные препараты (панкреатин ) и активированный уголь после приема пищи. В день перед исследованием проводится клизма или принимаются такие препараты как фортранс , которые помогают очистить кишечник естественным путем. Последний прием пищи должен быть за 12 часов до исследования, для того чтобы кишечник оставался незаполненным вплоть до момента исследования.

Методики рентгеновского исследования костей

Рентгеновское исследование предназначено для исследования всех костей скелета. Естественно, что для исследования большинства костей существуют свои особые методы получения рентгеновских снимков. Принцип получения снимков во всех случаях остается одинаковым. Он подразумевает помещение исследуемой части тела между рентгеновской трубкой и приемником излучения, таким образом, чтобы рентгеновские лучи проходили под прямым углом к исследуемой кости и к кассете с рентгеновской пленкой или датчиками.

Позиции, которые занимают компоненты рентгеновской установки относительно тела человека, называются укладками. За годы практики было разработано большое количество рентгеновских укладок. От точности их соблюдения зависит качество рентгеновских снимков. Иногда для выполнения данных предписаний пациенту приходится занимать вынужденное положение, однако рентгеновское исследование выполняется очень быстро.

Укладки обычно подразумевают выполнение снимков в двух взаимно перпендикулярных проекциях – прямой и боковой. Иногда исследование дополняется косой проекцией, которая помогает избавиться от наложения некоторых частей скелета друг на друга. В случае тяжелой травмы выполнение некоторых укладок становится невозможным. В этом случае выполняется рентген в том положении, которое доставляет наименьший дискомфорт пациенту и которое не приведет к смещению отломков и усугублению травмы.

Методика исследования костей конечностей (рук и ног )

Рентгеновское исследование трубчатых костей скелета является самым частым рентгеновским исследованием. Эти кости составляют основную массу костей, скелет рук и ног полностью складывается из трубчатых костей. Методика рентгеновского исследования должна быть знакома каждому, кто хоть раз в жизни получал повреждения рук или ног. Исследование занимает не более 10 минут, оно не доставляет боли или неприятных ощущений.

Трубчатые кости могут быть исследованы в двух перпендикулярных проекциях. Главным принципом любого рентгеновского снимка является расположение исследуемого объекта между излучателем и рентгеночувствительной пленкой. Единственным условием качественного снимка является неподвижность пациента во время исследования.

Перед исследованием отдел конечности обнажают, снимают с него все металлические предметы, зону исследования располагают по центру кассеты с рентгеновской пленкой. Конечность должна свободно «лежать» на кассете с пленкой. Пучок рентгеновского излучения направляют в центр кассеты перпендикулярно ее плоскости. Снимок выполняют таким образом, чтобы смежные суставы также попали на рентгеновский снимок. В противном случае трудно различить верхний и нижний конец трубчатой кости. Помимо этого, большой охват области помогает исключить повреждения суставов или прилегающих костей.

Обычно каждая кость исследуется в прямой и боковой проекции. Иногда снимки выполняют совместно с функциональными пробами. Они заключаются в сгибании и разгибании сустава или нагрузке на конечность. Иногда из-за травмы или невозможности изменить положение конечности приходится использовать особые проекции. Главным условием является соблюдение перпендикулярности кассеты и рентгеновского излучателя.

Методика рентгеновского исследования костей черепа

Рентгеновское исследование черепа обычно выполняется в двух взаимно перпендикулярных проекциях – боковой (в профиль ) и прямой (в анфас ). Рентген костей черепа назначается при травмах головы, при эндокринных нарушениях, для диагностики отклонений от показателей возрастного развития костей у детей.

Рентген костей черепа в прямой передней проекции дает общую информацию о состоянии костей и соединениях между ними. Он может быть выполнен в положении стоя или лежа. Обычно пациент ложится на рентгеновский стол на живот, под лоб подкладывают валик. Пациент сохраняет неподвижность в течение нескольких минут, в то время как рентгеновскую трубку направляют на затылочную область и выполняют снимок.

Рентген костей черепа в боковой проекции используется для изучения костей основания черепа, костей носа, но менее информативен для других костей лицевого скелета. Для выполнения рентгена в боковой проекции больной укладывается на рентгеновский стол на спину, кассету с пленкой ставят с левой или правой стороны головы пациента параллельно оси тела. Рентгеновская трубка направлена перпендикулярно кассете с противоположной стороны, на 1 см выше ушно-зрачковой линии.

Иногда врачи применяют рентген костей черепа в так называемой аксиальной проекции. Она соответствует вертикальной оси тела человека. Данная укладка имеет теменное и подбородочное направление, в зависимости от того, с какой стороны расположена рентгеновская трубка. Она информативна для исследования основания черепа, а также некоторых костей лицевого скелета. Ее преимущество заключается в том, что она позволяет избежать многих перекрытий костей друг на друга, характерных для прямой проекции.

Рентгенография черепа в аксиальной проекции состоит из следующих этапов:

  • больной снимает с себя металлические предметы, верхнюю одежду;
  • больной занимает горизонтальное положение на рентгеновском столе, лежа на животе;
  • голову располагают таким образом, чтобы подбородок максимально выступал вперед, а стола касались только подбородок и передняя поверхность шеи;
  • под подбородком располагается кассета с рентгеновской пленкой;
  • рентгеновская трубка направлена перпендикулярно плоскости стола, на область темени, расстояние между кассетой и трубкой должно составлять 100 см;
  • после этого выполняется снимок с подбородочным направлением рентгеновской трубки в положении стоя;
  • больной запрокидывает голову таким образом, чтобы теменем касаться опорной площадки, (поднятого рентгеновского стола ), а подбородок был как можно выше;
  • рентгеновская трубка направлена перпендикулярно к передней поверхности шеи, расстояние между кассетой и рентгеновской трубкой также составляет 1 метр.

Методики рентгена височной кости по Стенверсу, по Шюллеру, по Майеру

Височная кость – одна из основных костей, формирующих череп. В височной кости находится большое количество образований, к которым крепятся мышцы, а также отверстий и каналов, через которые проходят нервы. Из-за обилия костных образований в лицевой области рентгенологическое обследование височной кости затруднено. Именно поэтому были предложены разнообразные укладки для получения специальных рентгеновских снимков височной кости.

В настоящее время используются три проекции рентгенологического исследования височной кости:

  • Методика по Майеру (осевая проекция ). Используется для изучения состояния среднего уха, пирамиды височной кости и сосцевидного отростка. Рентген по Майеру выполняется в положении лежа. Голову поворачивают под углом 45 градусов к горизонтальной плоскости, под исследуемое ухо подкладывают кассету с рентгеновской пленкой. Рентгеновскую трубку направляют через лобную кость противоположной стороны, она должна быть направлена точно в центр наружного слухового отверстия исследуемой стороны.
  • Методика по Шюллеру (косая проекция ). При данной проекции оценивается состояние височно-нижнечелюстного сустава, сосцевидного отростка, а также пирамиды височной кости. Рентген выполняется лежа на боку. Голова пациента повернута вбок, между ухом исследуемой стороны и кушеткой находится кассета с рентгеновской пленкой. Рентгеновская трубка расположена под небольшим углом к вертикали и направлена к ножному концу стола. Рентгеновская трубка центрирована на ушной раковине исследуемой стороны.
  • Методика по Стенверсу (поперечная проекция ). Снимок в поперечной проекции позволяет оценить состояние внутреннего уха, а также пирамиды височной кости. Больной лежит на животе, голова повернута под углом 45 градусов к линии симметрии тела. Кассету располагают в поперечном положении, рентгеновскую трубку скашивают под углом к головному концу стола, пучок направляют в центр кассеты. Для всех трех методик используется рентгеновская трубка в узком тубусе.
Различные рентгеновские методики используются для исследования конкретных образований височной кости. Для того чтобы определить потребность в том или ином виде укладки, врачи руководствуются жалобами пациента и данными объективного осмотра. В настоящее время альтернативой различным видам рентгеновских укладок служит компьютерная томография височной кости.

Укладка при рентгене скуловых костей в тангенциальной проекции

Для обследования скуловой кости используется так называемая тангенциальная проекция. Она характеризуется тем, что рентгеновские лучи распространяются по касательной (тангенциально ) по отношению к краю скуловой кости. Такую укладку применяют, для того чтобы выявить переломы скуловой кости, наружного края глазницы, верхнечелюстной пазухи.

Методика рентгена скуловой кости включает следующие этапы:

  • пациент снимает с себя верхнюю одежду, украшения, металлические протезы;
  • пациент занимает горизонтальное положение на животе на рентгеновском столе;
  • голова пациента поворачивается под углом 60 градусов и укладывается на кассету, содержащую рентгеновскую пленку размером 13 х 18 см;
  • исследуемая сторона лица находится сверху, рентгеновская трубка расположена строго вертикально, однако за счет наклона головы рентгеновские лучи проходят касательно к поверхности скуловой кости;
  • в ходе исследования выполняют 2 – 3 снимка с небольшими поворотами головы.
В зависимости от задачи исследования угол поворота головы может меняться в пределах 20 градусов. Фокусное расстояние между трубкой и кассетой составляет 60 сантиметров. Рентген скуловой кости может быть дополнен обзорным снимком костей черепа, так как на нем довольно хорошо различимы все образования, исследуемые в тангенциальной проекции.

Методика рентгеновского исследования костей таза. Проекции, в которых выполняется рентген костей таза

Рентген таза является основным исследованием при повреждениях, опухолях, а также иных заболеваниях костей этой области. Рентген костей таза занимает не более 10 минут, однако существует большое разнообразие методик данного исследования. Наиболее часто выполняется обзорный рентген тазовых костей в задней проекции.

Последовательность выполнения обзорного рентгена тазовых костей в задней проекции включает следующие этапы:

  • пациент заходит в рентгеновский кабинет, снимает с себя металлические украшения и одежду, кроме нижнего белья;
  • пациент ложится на рентгеновский стол на спину и сохраняет такое положение на всем протяжении процедуры;
  • руки должны быть скрещены на груди, а под колени подкладывается валик;
  • ноги должны быть слегка раздвинуты, стопы фиксируются в установленном положении с помощью ленты или мешочков с песком;
  • кассета с пленкой размерами 35 х 43 см расположена поперечно;
  • рентгеновский излучатель направлен перпендикулярно кассете, между верхним передним подвздошным гребнем и лонным сочленением;
  • минимальное расстояние между излучателем и пленкой составляет один метр.
В случае если у пациента повреждены конечности, то ногам не придается специальное положение, поскольку это может привести к смещению отломков. Иногда рентген выполняется для обследования лишь одной части таза, например, при повреждениях. В таком случае больной занимает положение на спине, однако в тазе совершается незначительная ротация, таким образом, чтобы здоровая половина был на 3 – 5 см выше. Неповрежденная нога согнута и приподнята, бедро располагается вертикально и выходит за пределы исследования. Рентгеновские лучи направляют перпендикулярно шейке бедренной кости и кассете. Такая проекция дает боковой вид тазобедренного сустава.

Для исследования крестцово-подвздошного сочленения используется задняя косая проекция. Она выполняется при подъеме исследуемой стороны на 25 – 30 градусов. При этом кассета должна располагаться строго горизонтально. Рентгеновский луч направлен перпендикулярно кассете, расстояние от луча до передней подвздошной ости составляет около 3 сантиметров. При такой укладке пациента на рентгеновском снимке отчетливо отображается соединение между крестцом и подвздошными костями.

Определение возраста скелета по рентгену кисти у детей

Костный возраст точно свидетельствует о биологической зрелости организма. Показателями костного возраста являются точки окостенения и сращения отдельных частей костей (синостозы ). На основе костного возраста можно точно определить окончательный рост детей, установить отставание или опережение в развитии. Костный возраст определяется по рентгенограммам. После того, так были выполнены рентгенограммы, полученные результаты сравнивают с нормативами по специальным таблицам.

Наиболее показательным в определении возраста скелета является рентген кисти. Удобство данной анатомической области объясняется тем, что в кисти точки окостенения появляются с довольно высокой частотой, что позволяет регулярно проводить исследование и наблюдать за темпами роста. Определение костного возраста в основном используется для диагностики эндокринных нарушений, таких как недостаток гормона роста (соматотропина ).

Сопоставление возраста ребенка и появления точек окостенения на рентгеновском снимке кисти

Точки окостенения

Важной составной частью функционального анализа зубов, челюстей и ВНЧС является рентгенография. К рентгенологическим методам исследования относятся внутриротовая дентальная рентгенография, а также ряд методов внеротовой рентгенографии: панорамная рентгенография, ортопантомография, томография ВНЧС и телерентгенография.

На панорамной рентгенограмме видно изображение одной челюсти, на ортопантомограмме — обеих челюстей.

Телерентгенографию (рентгенография на расстоянии) применяют для изучения строения лицевого скелета. При рентгенографии ВНЧС используют методы Парма, Шюллера, а также томографию. Обзорные рентгенограммы малопригодны для функционального анализа: на них не видна суставная щель на всем протяжении, имеются проекционные искажения, наложения окружающих костных тканей.

Томография височно-нижнечелюстного сустава

Несомненные преимущества перед вышеназванными методами имеет томография (сагиттальная, фронтальная и аксиальная проекции), позволяющая видеть суставную щель, форму суставных поверхностей. Однако томография является срезом в одной плоскости и при этом исследовании невозможно оценить в целом положение и форму наружного и внутреннего полюсов головок ВНЧС.

Нечеткость суставных поверхностей на томограммах обусловлена наличием тени смазанных слоев. В области латерального полюса - это массив скуловой дуги, в области медиального полюса - каменистая часть височной кости. Томограмма бывает более четкой, если имеется срез в середине головки, а наибольшие изменения при патологии наблюдаются у полюсов головок.
На томограммах в сагиттальной проекции мы видим комбинацию смещения головок в вертикальной, горизонтальной и сагиттальной плоскостях. Например сужение суставной щели, обнаруживаемое на сагиттальной томограмме, может быть в результате смещения головки наружу, а не вверх, как принято считать; расширение суставной щели - смещение головки внутрь (медиально), а не только вниз (рис. 3.29, а).

Рис. 3.29. Сагиттальные томограммы ВНЧС и схема для их оценки. А - топография элементов ВНЧС справа (а) и слева (б) при смыкании челюстей в положении центральной (1), правой боковой (2) окклюзии и при открытом рте (3) в норме. Видна щель между костными элементами сустава - место для суставного диска; Б - схема для анализа сагиттальных томограмм: а - угол наклона заднего ската суставного бугорка к основной линии; 1 - переднесуставная щель; 2 - верхнесуставная щель; 3 - заднесустав-ная щель; 4 - высота суставного бугорка.

Расширение суставной щели на одной стороне и сужение ее на другой считают признаком смещения нижней челюсти в сторону, где суставная щель уже .

Внутренние и наружные отделы сустава определяются на фронтальных томограммах. Ввиду асимметрии расположения ВНЧС в пространстве лицевого черепа справа и слева на одной фронтальной томограмме не всегда удается получить изображение сустава с обеих сторон. Томограммы в аксиальной проекции применяют редко из-за сложной укладки пациента. В зависимости от задач исследования применяют томографию элементов ВНЧС в боковых проекциях в следующих положениях нижней челюсти: при максимальном смыкании челюстей; при максимальном открывании рта; в положении физиологического покоя нижней челюсти; в «привычной окклюзии».

При томографии в боковой проекции на томографе «Неодиагно-макс» укладывают больного на снимочный стол на живот, голову поворачивают в профиль таким образом, чтобы исследуемый сустав прилегал к кассете с пленкой. Сагиттальная плоскость черепа должна быть параллельна плоскости стола. При этом чаще всего используют глубину среза 2,5 см.

На томограммах ВНЧС в сагиттальной проекции при смыкании челюстей в положении центральной окклюзии в норме суставные головки занимают центрическое положение в суставных ямках. Контуры суставных поверхностей не изменены. Суставная щель в переднем, верхнем и заднем отделах симметрична справа и слева.

Средние размеры суставной щели (мм):

В переднем отделе - 2,2±0,5;
в верхнем отделе - 3,5±0,4;
в заднем отделе - 3,7+0,3.

На томограммах ВНЧС в сагиттальной проекции при открытом рте суставные головки располагаются против нижней трети суставных ямок или против вершин суставных бугров.

Для создания параллельности сагиттальной плоскости головы и плоскости стола томографа, неподвижности головы во время томографии и сохранения этого же положения при повторных исследованиях используют краниостат.

На томограммах в боковой проекции измеряют ширину отдельных участков суставной щели по методике И.И. Ужумецкене (рис. 3.29, б): оценивают размеры и симметричность суставных головок, высоту и наклон заднего ската суставных бугорков, амплитуду смещения суставных головок при переходе из положения центральной окклюзии в положение открытого рта.
Особый интерес представляет метод рентгенокинематографии ВНЧС. С помощью этого метода возможно изучение движения суставных головок в динамике [Петросов Ю.А., 1982].

Компьютерная томография

Компьютерная томография (КТ) позволяет получать прижизненные изображения тканевых структур на основании изучения степени поглощения рентгеновского излучения в исследуемой области. Принцип метода заключается в том, что исследуемый объект послойно просвечивается рентгеновским лучом в различных направлениях при движении рентгеновской трубки вокруг него. Непоглощенная часть излучения регистрируется с помощью специальных детекторов, сигналы от которых поступают в вычислительную систему (ЭВМ). После математической обработки полученных сигналов на ЭВМ строится изображение исследуемого слоя («среза») на матрице.

Высокая чувствительность метода КТ к изменениям рентгеновской плотности изучаемых тканей обусловлена тем, что получаемое изображение в отличие от обычного рентгеновского не искажается наложением изображений других структур, через которые проходит рентгеновский пучок. В то же время лучевая нагрузка на больного при КТ-исследовании ВНЧС не превышает таковую при обычной рентгенографии. По данным литературы, использование КТ и сочетание ее с другими дополнительными методами позволяют осуществить наиболее прецизионную диагностику, снизить лучевую нагрузку и решать те вопросы, которые решаются с трудом или совсем не решаются с помощью послойной рентгенографии.

Оценку степени поглощения излучения (рентгеновской плотности тканей) производят по относительной шкале коэффициентов поглощения (КП) рентгеновского излучения. В данной шкале за 0 ед. Н (Н - единица Хаунсфилда) принято поглощение в воде, за 1000 ед. Н. - в воздухе. Современные томографы позволяют улавливать различия плотностей в 4-5 ед. Н. На компьютерных томограммах более плотные участки, имеющие высокие значения КП, представляются светлыми, а менее плотные, имеющие низкие значения КП, темными.

С помощью современных компьютерных томографов III и IV поколений можно выделить слои толщиной 1,5 мм с моментальным воспроизведением изображения в черно-белом или цветном варианте, а также получить трехмерное реконструированное изображение исследуемой области. Метод позволяет бесконечно долго сохранять полученные томограммы на магнитных носителях и в любое время повторить их анализ посредством традиционных программ, заложенных в ЭВМ компьютерного томографа.

Преимущества КТ в диагностике патологии ВНЧС:

Полное воссоздание формы костных суставных поверхностей во всех плоскостях на основе аксиальных проекций (реконструктивное изображение);
обеспечение идентичности съемки ВНЧС справа и слева;
отсутствие наложений и проекционных искажений;
возможность изучения суставного диска и жевательных мышц;
воспроизведение изображения в любое время;
возможность измерения толщины суставных тканей и мышц и оценки ее с двух сторон.

Применение КТ для исследования ВНЧС и жевательных мышц впервые разработано в 1981 г. A.Hiils в диссертации, посвященной клинико-рентгенологическим исследованиям при функциональных нарушениях зубочелюстно-лицевой системы.

Основные показания к использованию КТ: переломы суставного отростка, краниофациальные врожденные аномалии, боковые смещения нижней челюсти, дегенеративные и воспалительные заболевания ВНЧС, опухоли ВНЧС, упорные суставные боли неясного генеза, неподдающиеся консервативной терапии.

КТ позволяет полностью воссоздать формы костных суставных поверхностей во всех плоскостях, не вызывает наложения изображений других структур и проекционных искажений [Хватова В.А., Корниенко В.И., 1991; Паутов И.Ю., 1995; Хватова В.А., 1996; Вязьмин А.Я., 1999; Westesson P., Brooks S., 1992, и др.]. Применение этого метода эффективно как для диагностики, так и дифференциальной диагностики органических изменений ВНЧС, не диагностируемых клинически. Решающее значение при этом имеет возможность оценки суставной головки в нескольких проекциях (прямые и реконструктивные срезы).

При дисфункции ВНЧС КТ-исследование в аксиальной проекции дает дополнительную информацию о состоянии костных тканей, положении продольных осей суставных головок, выявляет гипертрофию жевательных мышц (рис. 3.30).

КТ в сагиттальной проекции позволяет дифференцировать дисфункцию ВНЧС от других поражений сустава: травм, новообразований, воспалительных нарушений [Регtes R., Gross Sh., 1995, и др.].

На рис. 3.31 представлены КТ ВНЧС в сагиттальной проекции справа и слева и схемы к ним. Визуализировано нормальное положение суставных дисков.

Приводим пример использования КТ для диагностики заболевания ВНЧС.

Больная М ., 22 лет, обратилась с жалобами на боль и суставные щелчки справа при жевании в течение 6 лет. Во время обследования выявлено: при открывании рта нижняя челюсть смещается вправо, а затем зигзагообразно со щелчком влево, болезненная пальпация наружной крыловидной мышцы слева. Прикус ортогнатический с небольшим резцовым перекрытием, интактные зубные ряды, жевательные зубы справа стерты больше, чем слева; правосторонний тип жевания. При анализе функциональной окклюзии в полости рта и на моделях челюстей, установленных в артикулятор, выявлен балансирующий суперконтакт на дистальных скатах небного бугорка верхнего первого моляра (задержка стирания) и щечного бугорка второго нижнего моляра справа. На томограмме в сагиттальной проекции изменений не обнаружено. На КТ ВНЧС в той же проекции в положении центральной окклюзии смещение правой суставной головки назад, сужение заднесуставной щели, смещение вперед и деформация суставного диска (рис. 3.32, а). На КТ ВНЧС в аксиальной проекции толщина наружной крыловидной мышцы справа 13,8 мм, слева - 16,4 мм (рис. 3.32, б).

Диагноз: балансирующий суперконтакт небного бугорка 16 и щечного бугорка в левой боковой окклюзии,правосторонний тип жевания, гипертрофия наружной крыловидной мышцы слева, асимметрия размеров и положения суставных головок, мышечно-суставная дисфункция, дислокация кпереди диска ВНЧС справа, смещение суставной головки кзади.

Телерентгенография

Использование телерентгенографии в стоматологии позволило получать снимки с четкими контурами мягких и твердых структур лицевого скелета, проводить их метрический анализ и тем самым уточнять диагноз [Ужумецкене И.И., 1970; Трезубов В.Н., Фадеев Р.А., 1999, и др.].

Принцип метода заключается в получении рентгеновского снимка при большом фокусном расстоянии (1,5 м). При получении снимка с такого расстояния, с одной стороны, снижается лучевая нагрузка на пациента, с другой, уменьшается искажение лицевых структур. Применение цефалоста-тов обеспечивает получение идентичных снимков при повторных исследованиях.

Телерентгенограмма (ТРГ) в прямой проекции позволяет диагностировать аномалии зубочелюстной системы в трансверсальном направлении, в боковой проекции - в сагиттальном направлении. На ТРГ отображаются кости лицевого и мозгового черепа, контуры мягких тканей, что дает возможность изучить их соответствие. ТРГ используют как важный диагностический метод в ортодонтии, ортопедической стоматологии, челюстно-лице-вой ортопедии, ортогнатической хирургии. Применение ТРГ позволяет:
проводить диагностику различных заболеваний, в том числе аномалий и деформаций лицевого скелета;
планировать лечение этих заболеваний;
прогнозировать предполагаемые результаты лечения;
осуществлять контроль за ходом лечения;
объективно оценивать отдаленные результаты.

Так, при протезировании больных с деформациями окклюзионной поверхности зубных рядов использование ТРГ в боковой проекции дает возможность определить искомую протетическую плоскость, а следовательно, решить вопрос о степени сошлифовывания твердых тканей зубов и необходимости их девитализации.

При полном отсутствии зубов на телерентгенограмме можно на этапе постановки зубов проверить правильность нахождения окклюзионной поверхности.

Рентгеноцефалометрический анализ лица у пациентов с повышенной стираемостью зубов позволяет более точно дифференцировать форму данного заболевания, выбрать оптимальную тактику ортопедического лечения. Кроме того, оценив ТРГ, можно также получить информацию о степени атрофии альвеолярных частей верхней и нижней челюстей и определить конструкцию протеза.
Для расшифровки ТРГ снимок закрепляют на экране негатоскопа, прикрепляют к нему кальку, на которую переносят изображение.

Существует много методов анализа ТРГ в боковых проекциях. Одним из них является метод Шварца, основанный на использовании в качестве ориентира плоскости основания черепа. При этом можно определить:

Расположение челюстей по отношению к плоскости передней части основания черепа;
расположение ВНЧС по отношению к этой плоскости;
длину переднего основания че
репной ямки.

Анализ ТРГ - важный метод диагностики зубочелюстных аномалий, позволяющий выявить причины их формирования.

С помощью компьютерных средств можно не только повысить точность анализа ТРГ, сэкономить время их расшифровки, но и прогнозировать предполагаемые результаты лечения.

В.А.Хватова
Клиническая гнатология

План :

1) Рентгенологические исследования. Сущность рентгенологических методов исследования. Методы рентгеновского исследования: рентгеноскопия , рентгенография, флюорография , рентгенотомография, компьютерная томография . Диагностическое значение рентгенологических исследований. Роль медицинской сестры в подготовке к рентгеновским исследованиям. Правила подготовки пациента к рентгеноскопии и рентгенографии желудка и 12-перстной кишки, бронхографии, холецистографии и холангиографии, ирригоскопии и графии, обзорной рентгенографии почек и экскреторной урографии.

Рентгенологическое исследование почечных лоханок (пиелография) проводится с помощью урографина, вводимого внутривенно. Рентгенографическое исследование бронхов (бронхография) проводится после распыления в бронхах контрастного вещества — йодолипола. Рентгеновское исследование сосудов (ангиография) осуществляется с помощью кардиотраста, вводимого внутривенно. В некоторых случа-ях контрастирование органа производится за счет воздуха, который вводится в окружающую ткань или полость. На-пример, при рентгеновском исследовании почек, когда есть подозрение на опухоль почки, вводится воздух в околопочечную клетчатку (пневморен); для обнаружения прорастания опухолью стенок желудка воздух вводится в брюшнуюполость, т. е. исследование проводится в условиях искус-ственного пневмоперитонеума.

Томография - послойная рентгенография. При томо-графии благодаря движению во время съемки с определен-ной скоростью рентгеновской трубки на пленке получа-ется резким изображение только тех структур, которые расположены на определенной, заранее заданной глуби-не. Тени органов, расположенных на меньшей или боль-шей глубине, получаются смазанными и не накладываются на основное изображение. Томография облегчает выявле-ние опухолей, воспалительных инфильтратов и других па-тологических образований. На томограмме указывается в сантиметрах — на какой глубине, считая от спины, сделан снимок: 2, 4, 6, 7, 8 см.

Одной из наиболее совершенных методик, дающих дос-товерную информацию, является компьютерная томогра-фия , позволяющая благодаря использованию ЭВМ диффе-ренцировать ткани и изменения в них, очень незначительно различающиеся по степени поглощения рентгеновского из-лучения.

Накануне любого инструментального исследования необходимо проинформировать в доступной форме больного о сути предстоящего исследования, необходимости его проведения и получить согласие на проведение этого исследования в письменном виде.

Подготовка больного к рентгенологическому исследованию желудка и двенадцатиперстной кишки. Это метод исследования, основанный на просвечивании рентгеновскими лучами полых органов с применением контрастного вещества (сульфата бария), позволяющий определить форму, величину, положение, подвижность желудка и 12-перстной кишки, локализацию язвы, опухоли, оценить рельеф слизистой оболочки и функциональное состояние желудка (его эвакуаторную способность).

Перед исследованием необходимо:

1. Провести инструктаж больного по следующему плану:

а) за 2-3 дня до исследования необходимо исключить из рациона газообразующие продукты (овощи, фрукты, черный хлеб, молоко);

б) накануне исследования в 18 оо - легкий ужин;

в) предупредить, что исследование проводится натощак, поэтому накануне исследования больной не должен есть и пить, принимать медикаменты и курить.

2. В случае упорных запоров по назначению врача вечером, накануне исследования, ставится очистительная клизма.

5. С целью контрастирования пищевода, желудка и 12-типерстной кишки - в рентгенологическом кабинете больной выпивает водную взвесь сульфата бария.

Выполняется с цельюдиагностики заболеваний желчного пузыря и желчевыводящих путей. Необходимо предупредить больного о возможности появления тошноты и жидкого стула как реакции на прием контрастного вещества. Нужно взвесить больного и рассчитать дозу контрастного вещества.

Проводится инструктаж больного по следующей схеме:

а) накануне исследования в течение трёх дней больной соблюдает диету без высокого содержания клетчатки (исключить капусту, овощи, хлеб грубого помола);

б) за 14 - 17 часов до исследования больной принимает контрастное вещество дробно (по 0,5 грамма) в течение часа каждые 10 минут, запивая сладким чаем;

в) в 18 оо - легкий ужин;

г) вечером за 2 часа до сна, если больной не может освободить кишечник естественным путем, поставить очистительную клизму;

д) утром в день исследования, больной должен натощак явиться в рентгенкабинет (не пить, не есть, не курить, не принимать лекарственные вещества). Взять с собой 2 сырых яйца. В рентгенкабинете делаются обзорные снимки, после чего больной принимает желчегонный завтрак (2 сырых яичных желтка или раствор сорбита (20г на стакан кипяченой воды) для желчегонного эффекта). Спустя 20 минут после приема желчегонного завтрака выполняется серия обзорных снимков через определенные промежутки времени в течение 2-х часов.

Подготовка больного к холеграфии (рентгенологическое исследование желчного пузыря желчевыводящих путей после внутривенного введения контрастного вещества).

1. Выяснить аллергологический анамнез (непереносимость препаратов йода). За 1 - 2 дня до исследования провести пробу на чувствительность к контрастному веществу. Для этого 1 мл контрастного вещества, подогретого до t=37-38 о С, ввести внутривенно, осуществлять наблюдение за состоянием больного. Более простой способ - это прием внутрь йодистого калия по столовой ложке 3 раза в день. При положительной аллергопробе появляется сыпь, зуд и т.д. В случае отсутствия реакции на введенное контрастное вещество продолжить подготовку больного к исследованию

2. Перед исследованием провести инструктаж больного по следующему плану:

2 - 3 дня до исследования - бесшлаковая диета.

В 18 оо - легкий ужин.

За 2 часа до сна - очистительная клизма, если больной не может освободить кишечник естественным путем.

- Исследование проводится натощак.

3. В рентгенкабинете ввести внутривенно медленно в течение 10 минут 20-30 мл контрастного вещества, подогретого до t = 37-38 0 С.

4. Больному выполняется серия обзорных снимков.

5. Обеспечить контроль за состоянием больного в течение суток после выполнения исследования с целью исключения замедленного типа аллергических реакций.

Подготовка больного к бронхографии и бронхоскопии .

Бронхография - исследование дыхательных путей, позволяющее получить рентгенографически изображение трахеи и бронхов после введения в них контрастного вещества с помощью бронхоскопа. Бронхоскопия - инструментальный, эндоскопический метод исследования трахеи и бронхов, позволяющий произвести осмотр слизистой оболочки трахеи, гортани, провести забор содержимого или промывных вод бронхов для бактериологического, цитологического и иммунологического исследований, а также проведение лечения.

1. Для исключения идиосинкразии к йодолиполу назначается однократно 1столовая ложка данного препарата внутрь за 2-3 дня до исследования и в течение этих 2-3-х дней больной принимает 0,1% раствор атропина по 6-8 капель 3 раза в день).

2. Если бронхография назначена женщине - предупредить, чтобы на ногтях не было лака, а на губах - помады.

3. Накануне вечером по назначению врача с седативной целью больному принять 10 мг седуксена (при нарушении сна - снотворное).

4. За 30-40 минут до выполнения манипуляции провести премедикацию по назначению врача: ввести подкожно 1мл - 0,1% раствора атропина и 1мл 2% раствора промедола (оформить запись в истории болезни и журнале учета наркотических средств).

Подготовка больного к рентгенологическому исследованию толстого кишечника (ирригоскопия, ирригография) , которое позволяет получить представление о длине, положении, тонусе, форме толстой кишки, выявить нарушения моторной функции.

1. Провести инструктаж больного по следующей схеме:

а) за три дня до исследования назначается бесшлаковая диета;б)если больного беспокоит вздутие кишечника, то можно порекомендовать в течение трех дней принимать настой ромашки, карболен или ферментные препараты;

в) накануне исследования в 15-16 часов больной получает 30 г касторового масла (при отсутствии поноса);

г) в 19 00 - легкий ужин; д) в 20 00 и 21 00 накануне исследования проводятся очистительные клизмы до эффекта «чистой воды»;

е) утром в день исследования не позднее, чем за 2 часа до ирригоскопии выполняются 2 очистительные клизмы с интервалом в один час;

ж) в день исследования больной не должен пить, есть, курить и принимать медикаменты. С помощью кружки Эсмарха в кабинете медсестрой вводится водная взвесь сульфата бария.

Подготовка больного к рентгенологическому исследованию почек (обзорный снимок, экскреторная урография).

1. Провести инструктаж по подготовке больного к исследованию:

Исключить из питания газообразующие продукты (овощи, фрукты, молочные, дрожжеподобные продукты, черный хлеб, фруктовые соки) в течение 3 дней до исследования.

Принимать при метеоризме по назначению врача активированный уголь.

Исключить прием пищи за 18-20 часов до исследования.

2. Накануне вечером около 22 00 часов и утром за 1,5-2 часа до исследования поставить очистительные клизмы

3. Предложить больному освободить мочевой пузырь непосредственно перед исследованием.

В рентгенологическом кабинете врач-рентгенолог выполняет обзорный снимок брюшной полости. Медицинская сестра осуществляет медленное (в течение 5-8 минут), постоянно контролируя самочувствие больного, введение контрастного вещества. Врачом- рентгенологом выполняется серия снимков.

Глава 2. Основы и клиническое применение рентгенологического метода диагностики

Глава 2. Основы и клиническое применение рентгенологического метода диагностики

Уже более 100 лет известны лучи особого рода, занимающие большую часть спектра электромагнитных волн. 8 ноября 1895 г. профессор физики Вюрцбург-ского университета Вильгельм Конрад Рентген (1845-1923) обратил внимание на удивительное явление. Изучая в своей лаборатории работу электровакуумной (катодной) трубки, он заметил, что при подаче тока высокого напряжения на ее электроды находящийся рядом платино-синеродистый барий стал испускать зеленоватое свечение. Такое свечение люминесцирующих веществ под воздействием катодных лучей, исходящих из электровакуумной трубки, было к тому времени уже известно. Однако на столе Рентгена трубка во время опыта была плотно завернута в черную бумагу и хотя платино-синеродистый барий находился на значительном расстоянии от трубки, его свечение возобновлялось при каждой подаче электрического тока в трубку (см. рис. 2.1).

Рис.2.1. Вильгельм Конрад Рис. 2.2. Рентгенограмма кис-

Рентген (1845-1923) ти жены В К Рентгена Берты

Рентген пришел к выводу, что в трубке возникают какие-то не известные науке лучи, способные проникать через твердые тела и распространяться в воздухе на расстояния, измеряемые метрами. Первой рентгенограммой в истории человечества было изображение кисти жены Рентгена (см. рис. 2.2).

Рис. 2.3. Спектр электромагнитных излучений

Первое предварительное сообщение Рентгена «О новом виде лучей» было опубликовано в январе 1896 г. В трех последующих публичных докладах в 1896-1897 гг. он сформулировал все выявленные им свойства неизвестных лучей и указал на технику их появления.

В первые дни после опубликования открытия Рентгена его материалы были переведены на многие иностранные языки, в том числе и на русский. В Петербургском университете и Военно-медицинской академии уже в январе 1896 г. с помощью Х-лучей были выполнены снимки конечностей человека, а позже и других органов. Вскоре изобретатель радио А. С. Попов изготовил первый отечественный рентгеновский аппарат, который функционировал в Кронштадтском госпитале.

Рентген первым среди физиков в 1901 г. за свое открытие был удостоен Нобелевской премии, которая была ему вручена в 1909 г. Решением I Международного съезда по рентгенологии в 1906 г. Х-лучи названы рентгеновскими.

В течение нескольких лет во многих странах появились специалисты, посвятившие себя рентгенологии. В больницах появились рентгеновские отделения и кабинеты, в крупных городах возникли научные общества рентгенологов, на медицинских факультетах университетов организовались соответствующие кафедры.

Рентгеновские лучи являются одним из видов электромагнитных волн, которые в общеволновом спектре занимают место между ультрафиолетовыми лучами и γ-лучами. Они отличаются от радиоволн, инфракрасного излучения, видимого света и ультрафиолетового излучения меньшей длиной волны (см. рис. 2.3).

Скорость распространения рентгеновских лучей равна скорости света - 300 000 км/с.

В настоящее время известны следующие свойства рентгеновских лучей. Рентгеновские лучи обладают проникающей способностью. Рентген сообщал, что способность лучей к проникновению через различные среды обратно

пропорциональна удельному весу этих сред. Вследствие малой длины волны рентгеновские лучи могут проникать сквозь объекты, непроницаемые для видимого света.

Рентгеновские лучи способны поглощаться и рассеиваться. При поглощении часть рентгеновских лучей с наибольшей длиной волны исчезает, полностью передавая свою энергию веществу. При рассеивании часть лучей отклоняется от первоначального направления. Рассеянное рентгеновское излучение не несет полезной информации. Часть лучей полностью проходит через объект с изменением своих характеристик. Таким образом формируется невидимое изображение.

Рентгеновские лучи, проходя через некоторые вещества, вызывают их флюоресценцию (свечение). Вещества, обладающие этим свойством, называются люминофорами и широко применяются в рентгенологии (рентгеноскопия, флюорография).

Рентгеновские лучи оказывают фотохимическое действие. Как и видимый свет, попадая на фотографическую эмульсию, они воздействуют на галоге-ниды серебра, вызывая химическую реакцию восстановления серебра. На этом основана регистрация изображения на фоточувствительных материалах.

Рентгеновские лучи вызывают ионизацию вещества.

Рентгеновские лучи оказывают биологическое действие, связанное с их ионизирующей способностью.

Рентгеновские лучи распространяются прямолинейно, поэтому рентгеновское изображение всегда повторяет форму исследуемого объекта.

Рентгеновским лучам свойственна поляризация - распространение в определенной плоскости.

Дифракция и интерференция присущи рентгеновским лучам, как и остальным электромагнитным волнам. На этих свойствах основаны рентгеноспек-троскопия и рентгеновский структурный анализ.

Рентгеновские лучи невидимы.

В состав любой рентгенодиагностической системы входят 3 основных компонента: рентгеновская трубка, объект исследования (пациент) и приемник рентгеновского изображения.

Рентгеновская трубка состоит из двух электродов (анода и катода) и стеклянной колбы (рис. 2.4).

При подаче тока накала на катод его спиральная нить сильно разогревается (накаляется). Вокруг нее возникает облачко свободных электронов (явление термоэлектронной эмиссии). Как только между катодом и анодом возникает разность потенциалов, свободные электроны устремляются к аноду. Скорость движения электронов прямо пропорциональна величине напряжения. При торможении электронов в веществе анода часть их кинетической энергии идет на образование рентгеновских лучей. Эти лучи свободно выходят за пределы рентгеновской трубки и распространяются в разных направлениях.

Рентгеновские лучи в зависимости от способа возникновения делятся на первичные (лучи торможения) и вторичные (лучи характеристические).

Рис. 2.4. Принципиальная схема рентгеновской трубки: 1 - катод; 2 - анод; 3 - стеклянная колба; 4 - поток электронов; 5 - пучок рентгеновских лучей

Первичные лучи. Электроны в зависимости от направления главного трансформатора могут перемещаться в рентгеновских трубках с различными скоростями, приближающимися при наибольшем напряжении к скорости света. При ударе об анод, или, как говорят, при торможении, кинетическая энергия полета электронов преобразуется большей частью в тепловую энергию, которая нагревает анод. Меньшая часть кинетической энергии преобразуется в рентгеновские лучи торможения. Длина волны лучей торможения зависит от скорости полета электронов: чем она больше, тем длина волны меньше. Проникающая способность лучей зависит от длины волны (чем волна короче, тем больше ее проникающая способность).

Меняя напряжение трансформатора, можно регулировать скорость электронов и получать либо сильно проникающие (так называемые жесткие), либо слабо проникающие (так называемые мягкие) рентгеновские лучи.

Вторичные (характеристические) лучи. Они возникают в процессе торможения электронов, но длина их волн зависит исключительно от структуры атомов вещества анода.

Дело в том, что энергия полета электронов в трубке может достигнуть таких величин, что при ударах электронов об анод будет выделяться энергия, достаточная, чтобы заставить электроны внутренних орбит атомов вещества анода «перескакивать» на внешние орбиты. В таких случаях атом возвращается к своему состоянию, потому что с внешних его орбит будет происходить переход электронов на свободные внутренние орбиты с выделением энергии. Возбужденный атом вещества анода возвращается к состоянию покоя. Характеристическое излучение возникает в результате изменений во внутренних электронных слоях атомов. Слои электронов в атоме строго определены

для каждого элемента и зависят от его места в периодической системе Менделеева. Следовательно, получаемые от данного атома вторичные лучи будут иметь волны строго определенной длины, поэтому эти лучи и называют характеристическими.

Формирование электронного облака на спирали катода, полет электронов к аноду и получение рентгеновских лучей возможны только в условиях вакуума. Для его создания и служит колба рентгеновской трубки из прочного стекла, способного пропускать рентгеновские лучи.

В качестве приемников рентгеновского изображения могут выступать: рентгенографическая пленка, селеновая пластина, флюоресцентный экран, а также специальные детекторы (при цифровых способах получения изображения).

МЕТОДИКИ РЕНТГЕНОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Все многочисленные методики рентгенологического исследования разделяют на общие и специальные.

К общим относятся методики, предназначенные для изучения любых анатомических областей и выполняемые на рентгеновских аппаратах общего назначения (рентгеноскопия и рентгенография).

К общим следует отнести и ряд методик, при которых также возможно изучение любых анатомических областей, но требуются либо особая аппаратура (флюорография, рентгенография с прямым увеличением изображения), либо дополнительные приспособления к обычным рентгеновским аппаратам (томография, электрорентгенография). Иногда эти методики называют также частными.

К специальным методикам относятся те, которые позволяют получить изображение на специальных установках, предназначенных для исследования определенных органов и областей (маммография, ортопантомография). К специальным методикам относится также большая группа рентгенокон-трастных исследований, при которых изображения получаются с применением искусственного контрастирования (бронхография, ангиография, экскреторная урография и др.).

ОБЩИЕ МЕТОДИКИ РЕНТГЕНОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Рентгеноскопия - методика исследования, при которой изображение объекта получают на светящемся (флюоресцентном) экране в реальном масштабе времени. Некоторые вещества интенсивно флюоресцируют под влиянием рентгеновских лучей. Эту флюоресценцию используют в рентгенодиагностике, применяя картонные экраны, покрытые флюоресцирующим веществом.

Больного устанавливают (укладывают) на специальном штативе. Рентгеновские лучи, пройдя сквозь тело больного (интересующую исследователя область), попадают на экран и вызывают его свечение - флюоресценцию. Флюоресценция экрана неодинаково интенсивна - она тем ярче, чем больше попадает рентгеновских лучей в ту или иную точку экрана. На экран

попадает тем меньше лучей, чем более плотные препятствия будут на их пути от трубки до экрана (например, костная ткань), а также чем толще ткани, через которые лучи проходят.

Свечение флюоресцентного экрана очень слабое, поэтому рентгеноскопия проводилась в темноте. Изображение на экране было плохо различимо, мелкие детали не дифференцировались, а лучевая нагрузка при таком исследовании была довольно высокой.

В качестве усовершенствованного метода рентгеноскопии применяют рентгенотелевизионное просвечивание с помощью усилителя рентгеновского изображения - электронно-оптического преобразователя (ЭОП) и замкнутой телевизионной системы. В ЭОП видимое изображение на флюоресцирующем экране усиливается, преобразуется в электрический сигнал и отображается на экране дисплея.

Рентгеновское изображение на дисплее, как и обычное телевизионное изображение, можно изучать в освещенном помещении. Лучевая нагрузка на пациента и персонал при применении ЭОП значительно меньше. Телесистема позволяет записать все этапы исследования, в том числе движение органов. Кроме того, по телеканалу изображение можно передать на мониторы, находящиеся в других помещениях.

При рентгеноскопическом исследовании формируется позитивное плоскостное черно-белое суммационное изображение в реальном масштабе времени. При перемещении больного относительно рентгеновского излучателя говорят о полипозиционном, а при перемещении рентгеновского излучателя относительно больного - о полипроекционном исследовании; и то и другое позволяет получить более полную информацию о патологическом процессе.

Однако рентгеноскопии, как с ЭОП, так и без него, свойствен ряд недостатков, сужающих сферу применения метода. Во-первых, лучевая нагрузка при рентгеноскопии остается относительно высокой (намного выше, чем при рентгенографии). Во-вторых, у методики низкое пространственное разрешение (возможность рассмотреть и оценить мелкие детали ниже, чем при рентгенографии). В связи с этим рентгеноскопию целесообразно дополнять производством снимков. Это необходимо также для объективизации результатов исследования и возможности их сравнения при динамическом наблюдении за больным.

Рентгенография - это методика рентгенологического исследования, при которой получается статическое изображение объекта, зафиксированное на каком-либо носителе информации. Такими носителями могут быть рентгеновская пленка, фотопленка, цифровой детектор и др. На рентгенограммах можно получить изображение любой анатомической области. Снимки всей анатомической области (голова, грудь, живот) называют обзорными (рис. 2.5). Снимки с изображением небольшой части анатомической области, которая наиболее интересует врача, называют прицельными (рис. 2.6).

Некоторые органы хорошо различимы на снимках благодаря естественной контрастности (легкие, кости) (см. рис. 2.7); другие (желудок, кишечник) отчетливо отображаются на рентгенограммах только после искусственного контрастирования (см. рис. 2.8).

Рис. 2.5. Обзорная рентгенограмма поясничного отдела позвоночника в боковой проекции. Компрессион но-ос-кольчатый перелом тела L1 позвонка

Рис. 2.6.

Прицельная рентгенограмма L1 позвонка в боковой проекции

Проходя через объект исследования, рентгеновское излучение в большей или меньшей степени задерживается. Там, где излучение задерживается больше, формируются участки затенения; где меньше - просветления.

Рентгеновское изображение может быть негативным или позитивным. Так, например, в негативном изображении кости выглядят светлыми, воздух - темным, в позитивном изображении - наоборот.

Рентгеновское изображение черно-белое и плоскостное (сум-мационное).

Преимущества рентгенографии перед рентгеноскопией:

Большая разрешающая способность;

Возможность оценки многими исследователями и ретроспективного изучения изображения;

Возможность длительного хранения и сравнения изображения с повторными снимками в процессе динамического наблюдения за больным;

Уменьшение лучевой нагрузки на пациента.

К недостаткам рентгенографии следует отнести увеличение материальных затрат при ее применении (рентгенографическая пленка, фотореактивы и др.) и получение желаемого изображения не сразу, а через определенное время.

Методика рентгенографии доступна для всех лечебных учреждений и применяется повсеместно. Рентгеновские аппараты различных типов позволяют выполнять рентгенографию не только в условиях рентгеновского кабинета, но и за его пределами (в палате, в операционной и т. д.), а также в нестационарных условиях.

Развитие компьютерной техники позволило разработать цифровой (дигитальный) способ получения рентгеновского изображения (от англ. digit - «цифра»). В цифровых аппаратах рентгеновское изображение с ЭОП поступает в специальное устройство - аналого-цифровой преобразователь (АЦП), в котором электрический сигнал, несущий информацию о рентгеновском изображении, кодируется в цифровую форму. Поступая затем в компьютер, цифровая информация обрабатывается в нем по заранее составленным программам, выбор которых зависит от задач исследования. Превращение цифрового образа в аналоговый, видимый происходит в цифро-аналоговом преобразователе (ЦАП), функция которого противоположна АЦП.

Основные преимущества цифровой рентгенографии перед традиционной: быстрота получения изображения, широкие возможности его постпроцессорной обработки (коррекция яркости и контрастности, подавление шума, электронное увеличение изображения зоны интереса, преимущественное выделение костных либо мяг-котканных структур и т. д.), отсутствие фотолабораторного процесса и электронное архивирование изображений.

Кроме того, компьютеризация рентгеновского оборудования позволяет быстро передавать изображения на значительные расстояния без потери качества, в том числе в другие лечебные учреждения.

Рис. 2.7. Рентгенограммы голеностопного сустава в прямой и боковой проекциях

Рис. 2.8. Рентгенограмма толстой кишки, контрастированной взвесью бария сульфата (ирригограмма). Норма

Флюорография - фотографирование рентгеновского изображения с флюоресцентного экрана на фотографическую пленку различного формата. Такое изображение всегда уменьшено.

По информативности флюорография уступает рентгенографии, но при использовании крупнокадровых флюорограмм различие между этими методиками становится менее существенным. В связи с этим в лечебных учреждениях у ряда пациентов с заболеваниями органов дыхания флюорография может заменять рентгенографию, особенно при повторных исследованиях. Такую флюорографию называют диагностической.

Основным назначением флюорографии, связанным с быстротой ее выполнения (на выполнение флюорограммы тратится примерно в 3 раза меньше времени, чем на выполнение рентгенограммы), являются массовые обследования для выявления скрыто протекающих заболеваний легких (профилактическая, или проверочная, флюорография).

Флюорографические аппараты компактны, их можно монтировать их в кузове автомобиля. Это делает возможным проведение массовых обследований в тех местностях, где рентгенодиагностическая аппаратура отсутствует.

В настоящее время пленочная флюорография все больше вытесняется цифровой. Термин «цифровые флюорографы» является в известной мере условным, поскольку в этих аппаратах не происходит фотографирования рентгеновского изображения на фотопленку, т. е. не выполняются флюо-рограммы в привычном смысле этого слова. По сути дела эти флюорографы представляют собой цифровые рентгенографические аппараты, предназначенные преимущественно (но не исключительно) для исследования органов грудной полости. Цифровая флюорография обладает всеми достоинствами, присущими цифровой рентгенографии вообще.

Рентгенография с прямым увеличением изображения может использоваться только при наличии специальных рентгеновских трубок, в которых фокусное пятно (площадь, с которой рентгеновские лучи исходят от излучателя) имеет очень малые размеры (0,1-0,3 мм 2). Увеличенное изображение получают, приближая исследуемый объект к рентгеновской трубке без изменения фокусного расстояния. В результате на рентгенограммах видны более мелкие детали, неразличимые на обычных снимках. Методика находит применение при исследовании периферических костных структур (кисти, стопы и др.).

Электрорентгенография - методика, при которой диагностическое изображение получают не на рентгеновской пленке, а на поверхности селеновой пластины с переносом на бумагу. Равномерно заряженная статическим электричеством пластина используется вместо кассеты с пленкой и в зависимости от разного количества ионизирующего излучения, попавшего в различные точки ее поверхности, по-разному разряжается. На поверхность пластины распыляют тонкодисперсный угольный порошок, который по законам электростатического притяжения распределяется по поверхности пластины неравномерно. На пластину накладывают лист писчей бумаги, и изображение переводится на бумагу в результате прилипания угольного

порошка. Селеновую пластину в отличие от пленки можно использовать неоднократно. Методика отличается быстротой, экономичностью, не требует затемненного помещения. Кроме того, селеновые пластины в незаряженном состоянии индифферентны к воздействию ионизирующих излучений и могут быть использованы при работе в условиях повышенного радиационного фона (рентгеновская пленка в этих условиях придет в негодность).

В целом электрорентгенография по своей информативности лишь ненамного уступает пленочной рентгенографии, превосходя ее при исследовании костей (рис. 2.9).

Линейная томография - методика послойного рентгенологического исследования.

Рис. 2.9. Электрорентгенограмма голеностопного сустава в прямой проекции. Перелом малоберцовой кости

Как уже упоминалось, на рентгенограмме видно суммационное изображение всей толщи исследуемой части тела. Томография служит для получения изолированного изображения структур, расположенных в одной плоскости, как бы расчленяя сумма-ционное изображение на отдельные слои.

Эффект томографии достигается благодаря непрерывному движению во время съемки двух или трех компонентов рентгеновской системы: рентгеновская трубка (излучатель) - пациент - приемник изображения. Чаще всего перемещаются излучатель и приемник изображения, а пациент неподвижен. Излучатель и приемник изображения движутся по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях. При таком перемещении изображение большинства деталей на томограмме оказывается размазанным, расплывчатым, нечетким, а образования, находящиеся на уровне центра вращения системы излучатель - приемник, отображаются наиболее четко (рис. 2.10).

Особое преимущество перед рентгенографией линейная томография приобретает

тогда, когда исследуются органы со сформированными в них плотными патологическими зонами, полностью затеняющими те или иные участки изображения. В ряде случаев она помогает определить характер патологического процесса, уточнить его локализацию и распространенность, выявить мелкие патологические очаги и полости (см. рис. 2.11).

Конструктивно томографы выполняют в виде дополнительного штатива, который может автоматически передвигать рентгеновскую трубку по дуге. При изменении уровня центра вращения излучатель - приемник изменится глубина получаемого среза. Толщина изучаемого слоя тем меньше, чем больше амплитуда движения упомянутой выше системы. Если же выбирают очень

малый угол перемещения (3-5°), то получают изображение толстого слоя. Эта разновидность линейной томографии получила название - зонография.

Линейная томография применяется достаточно широко, особенно в лечебных учреждениях, не имеющих компьютерных томографов. Наиболее часто показанием к выполнению томографии служат заболевания легких и средостения.

СПЕЦИАЛЬНЫЕ МЕТОДИКИ

РЕНТГЕНОЛОГИЧЕСКОГО

ИССЛЕДОВАНИЯ

Ортопантомография - это вариант зо-нографии, позволяющий получитьразвер-нутое плоскостное изображение челюстей (см. рис. 2.12). Отдельное изображение каждого зуба при этом достигается путем их последовательной съемки узким пуч-

Рис. 2.10. Схема получения томографического изображения: а - исследуемый объект; б - томографический слой; 1-3 - последовательные положения рентгеновской трубки и приемника излучения в процессе исследованиям

ком рентгеновских лучей на отдельные участки пленки. Условия для этого создаются синхронным круговым движением вокруг головы пациента рентгеновской трубки и приемника изображения, установленных на противоположных концах поворотного штатива аппарата. Методика позволяет исследовать и другие отделы лицевого скелета (околоносовые пазухи, глазницы).

Маммография - рентгенологическое исследование молочной железы. Оно выполняется для изучения структуры молочной железы при обнаружении в ней уплотнений, а также с профилактической целью. Молочная желе-

за является мягкотканным органом, поэтому для изучения ее структуры необходимо использовать очень небольшие величины анодного напряжения. Существуют специальные рентгеновские аппараты - маммографы, где устанавливаются рентгеновские трубки с фокусным пятном размером в доли миллиметра. Они оборудованы специальными штативами для укладки молочной железы с устройством для ее компрессии. Это позволяет уменьшить толщину тканей железы во время исследования, повышая тем самым качество маммограмм (см. рис. 2.13).

Методики с применением искусственного контрастирования

Для того чтобы невидимые на обычных снимках органы были отображены на рентгенограммах, прибегают к методике искусственного контрастирования. Методика заключается во введении в организм веществ,

Рис. 2.11. Линейная томограмма правого легкого. В верхушке легкого определяется крупная воздушная полость с толстыми стенками

которые поглощают (или, наоборот, пропускают) излучение гораздо сильнее (или слабее), чем исследуемый орган.

Рис. 2.12. Ортопантомограмма

В качестве контрастных веществ используют вещества либо с низкой относительной плотностью (воздух, кислород, углекислый газ, закись азота), либо с большой атомной массой (взвеси или растворы солей тяжелых металлов и галогениды). Первые поглощают рентгеновское излучение в меньшей степени, чем анатомические структуры (негативные), вторые - в большей (позитивные). Если, например, ввести воздух в брюшную полость (искусственный пневмоперитонеум), то на его фоне отчетливо выделяются очертания печени, селезенки, желчного пузыря, желудка.

Рис. 2.13. Рентгенограммы молочной железы в краниокаудальной (а) и косой (б) проекциях

Для исследования полостей органов обычно применяют высокоатомные контрастные вещества, наиболее часто - водную взвесь бария сульфата и соединения йода. Эти вещества, в значительной мере задерживая рентгеновское излучение, дают на снимках интенсивную тень, по которой можно судить о положении органа, форме и величине его полости, очертаниях его внутренней поверхности.

Различают два способа искусственного контрастирования с помощью высокоатомных веществ. Первый заключается в непосредственном введении контрастного вещества в полость органа - пищевода, желудка, кишечника, бронхов, кровеносных или лимфатических сосудов, мочевыводящих путей, полостных систем почек, матки, слюнных протоков, свищевых ходов, лик-ворных пространств головного и спинного мозга и т. д.

Второй способ основан на специфической способности отдельных органов концентрировать те или иные контрастные вещества. Например, печень, желчный пузырь и почки концентрируют и выделяют некоторые введенные в организм соединения йода. После введения пациенту таких веществ на снимках через определенное время различаются желчные протоки, желчный пузырь, полостные системы почек, мочеточники, мочевой пузырь.

Методика искусственного контрастирования в настоящее время является ведущей при рентгенологическом исследовании большинства внутренних органов.

В рентгенологической практике используют 3 вида рентгеноконтрастных средств (РКС): йодсодержащие растворимые, газообразные, водную взвесь сульфата бария. Основным средством для исследования желудочно-кишечного тракта является водная взвесь сульфата бария. Для исследования кровеносных сосудов, полостей сердца, мочевыводящих путей применяют водорастворимые йодсодержащие вещества, которые вводят либо внутрисо-судисто, либо в полость органов. Газы в качестве контрастных веществ в настоящее время почти не применяются.

При выборе контрастных веществ для проведения исследований РКС необходимо оценивать с позиций выраженности контрастирующего эффекта и безвредности.

Безвредность РКС помимо обязательной биологической и химической инертности зависит от их физических характеристик, из которых наиболее существенными являются осмолярность и электрическая активность. Ос-молярность определяется числом ионов или молекул РКС в растворе. Относительно плазмы крови, осмолярность которой равна 280 мОсм /кг Н 2 О, контрастные вещества могут быть высокоосмолярными (более 1200 мОсм/кг Н 2 О), низкоосмолярными (менее 1200 мОсм/кг Н 2 О) или изоосмолярными (по осмолярности равными крови).

Высокая осмолярность отрицательно воздействует на эндотелий, эритроциты, клеточные мембраны, протеины, поэтому следует отдавать предпочтение низкоосмолярным РКС. Оптимальны РКС, изоосмолярные с кровью. Следует помнить, что осмолярность РКС как ниже, так и выше осмолярности крови делает эти средства неблагоприятно воздействующими на клетки крови.

По показателям электрической активности рентгеноконтрастные препараты подразделяются на: ионные, распадающиеся в воде на электрически заряженные частицы, и неионные, электрически нейтральные. Осмолярность ионных растворов в силу большего содержания в них частиц вдвое больше, чем неионные.

Неионные контрастные вещества по сравнению с ионными обладают рядом преимуществ: значительно меньшей (в 3-5 раз) общей токсичностью, дают значительно менее выраженный вазодилатационный эффект, обусловливают

меньшую деформацию эритроцитов и гораздо меньше высвобождают гис-тамин, активизируют систему комплемента, ингибируют активность холи-нэстеразы, что снижает риск негативных побочных действий.

Таким образом, неионные РКС дают наибольшие гарантии в отношении как безопасности, так и качества контрастирования.

Широкое внедрение контрастирования различных органов указанными препаратами обусловило появление многочисленных методик рентгенологического исследования, значительно повышающих диагностические возможности рентгенологического метода.

Диагностический пневмоторакс - рентгенологическое исследование органов дыхания после введения газа в плевральную полость. Выполняется с целью уточнения локализации патологических образований, расположенных на границе легкого с соседними органами. С появлением метода КТ применяется редко.

Пневмомедиастинография - рентгенологическое исследование средостения после введения газа в его клетчатку. Выполняется с целью уточнения локализации выявленных на снимках патологических образований (опухолей, кист) и их распространения на соседние органы. С появлением метода КТ практически не применяется.

Диагностический пневмоперитонеум - рентгенологическое исследование диафрагмы и органов полости живота после введения газа в полость брюшины. Выполняется с целью уточнения локализации патологических образований, выявленных на снимках на фоне диафрагмы.

Пневморетроперитонеум - методика рентгенологического исследования органов, расположенных в забрюшинной клетчатке, путем введения в забрюшин-ную клетчатку газа с целью лучшей визуализации их контуров. С внедрением в клиническую практику УЗИ, КТ и МРТ практически не применяется.

Пневморен - рентгенологическое исследование почки и рядом расположенного надпочечника после введения газа в околопочечную клетчатку. В настоящее время выполняется крайне редко.

Пневмопиелография - исследование полостной системы почки после заполнения ее газом через мочеточниковый катетер. В настоящее время используется преимущественно в специализированных стационарах для выявления внутрилоханочных опухолей.

Пневмомиелография - рентгенологическое исследование подпаутинного пространства спинного мозга после его контрастирования газом. Используется для диагностики патологических процессов в области позвоночного канала, вызывающих сужение его просвета (грыжи межпозвоночных дисков, опухоли). Применяется редко.

Пневмоэнцефалография - рентгенологическое исследование ликворных пространств головного мозга после их контрастирования газом. После внедрения в клиническую практику КТ и МРТ выполняется редко.

Пневмоартрография - рентгенологическое исследование крупных суставов после введения в их полость газа. Позволяет изучить суставную полость, выявить в ней внутрисуставные тела, обнаружить признаки повреждения менисков коленного сустава. Иногда ее дополняют введением в полость сустава

водорастворимого РКС. Достаточно широко используется в лечебных учреждениях при невозможности выполнения МРТ.

Бронхография - методика рентгенологического исследования бронхов после их искусственного контрастирования РКС. Позволяет выявить различные патологические изменения бронхов. Широко используется в лечебных учреждениях при недоступности КТ.

Плеврография - рентгенологическое исследование плевральной полости после ее частичного заполнения контрастным препаратом с целью уточнения формы и размеров плевральных осумкований.

Синография - рентгенологическое исследование околоносовых пазух после их заполнения РКС. Применяется тогда, когда возникают затруднения в интерпретации причины затенения пазух на рентгенограммах.

Дакриоцистография - рентгенологическое исследование слезных путей после их заполнения РКС. Применяется с целью изучения морфологического состояния слезного мешка и проходимости слезноносового канала.

Сиалография - рентгенологическое исследование протоков слюнных желез после их заполнения РКС. Применяется для оценки состояния протоков слюнных желез.

Рентгеноскопия пищевода, желудка и двенадцатиперстной кишки - проводится после их постепенного заполнения взвесью бария сульфата, а при необходимости - и воздухом. Обязательно включает в себя полипозиционную рентгеноскопию и выполнение обзорных и прицельных рентгенограмм. Широко применяется в лечебных учреждениях для выявления различных заболеваний пищевода, желудка и двенадцатиперстной кишки (воспалительно-деструктивные изменения, опухоли и др.) (см. рис. 2.14).

Энтерография - рентгенологическое исследование тонкой кишки после заполнения ее петель взвесью бария сульфата. Позволяет получить информацию о морфологическом и функциональном состоянии тонкой кишки (см. рис. 2.15).

Ирригоскопия - рентгенологическое исследование толстой кишки после ретроградного контрастирования ее просвета взвесью бария сульфата и воздухом. Широко применяется для диагностики многих заболеваний толстой кишки (опухоли, хронический колит и т. д.) (см. рис. 2.16).

Холецистография - рентгенологическое исследование желчного пузыря после накопления в нем контрастного вещества, принятого внутрь и выделенного с желчью.

Выделительная холеграфия - рентгенологическое исследование желчных путей, контрастированных с помощью йодсодержащих препаратов, вводимых внутривенно и выделяемых с желчью.

Холангиография - рентгенологическое исследование желчных протоков после введения РКС в их просвет. Широко используется для уточнения морфологического состояния желчных протоков и выявления в них конкрементов. Может выполняться во время оперативного вмешательства (ин-траоперационная холангиография) и в послеоперационном периоде (через дренажную трубку) (см. рис. 2.17).

Ретроградная холангиопанкреатикография - рентгенологическое исследование желчных протоков и протока поджелудочной железы после введения

в их просвет контрастного препарата под рентгеноэндоскопическим контролем (см. рис. 2.18).

Рис. 2.14. Рентгенограмма желудка, контрастированного взвесью бария сульфата. Норма

Рис. 2.16. Ирригограмма. Рак слепой кишки. Просвет слепой кишки резко сужен, контуры пораженного участка неровные (на снимке указано стрелками)

Рис. 2.15. Рентгенограмма тонкой кишки, контрастированной взвесью бария сульфата (энтерограмма). Норма

Рис. 2.17. Антеградная холангиограм-ма. Норма

Экскреторная урография - рентгенологическое исследование мочевых органов после внутривенного введения РКС и выделения его почками. Широко распространенная методика исследования, позволяющая изучать морфологическое и функциональное состояние почек, мочеточников и мочевого пузыря (см. рис. 2.19).

Ретроградная уретеропиелография - рентгенологическое исследование мочеточников и полостных систем почек после заполнения их РКС через мочеточниковый катетер. По сравнению с выделительной урографией позволяет получить более полную информацию о состоянии мочевых путей

в результате их лучшего заполнения контрастным препаратом, вводимым под небольшим давлением. Широко применяется в специализированных урологических отделениях.

Рис. 2.18. Ретроградная холангиопан-креатикограмма. Норма

Рис. 2.19. Экскреторная урограмма. Норма

Цистография - рентгенологическое исследование мочевого пузыря, заполненного РКС (см. рис. 2.20).

Уретрография - рентгенологическое исследование мочеиспускательного канала после его заполнения РКС. Позволяет получить информацию о проходимости и морфологическом состоянии уретры, выявить ее повреждения, стриктуры и т. д. Применяется в специализированных урологических отделениях.

Гистеросальпингография - рентгенологическое исследование матки и маточных труб после заполнения их просвета РКС. Широко используется в первую очередь для оценки проходимости маточных труб.

Позитивная миелография - рентгенологическое исследование под-паутинных пространств спинного

Рис. 2.20. Нисходящая цистограмма. Норма

мозга после введения водорастворимых РКС. С появлением МРТ применяется редко.

Аортография - рентгенологическое исследование аорты после введения в ее просвет РКС.

Артериография - рентгенологическое исследование артерий с помощью введенных в их просвет РКС, распространяющихся по току крови. Некоторые частные методики артериографии (коронарография, каротидная ангиография), будучи высокоинформативными, в то же время технически сложны и небезопасны для пациента, в связи с чем применяются только в специализированных отделениях (рис. 2.21).

Рис. 2.21. Каротидные ангиограммы в прямой (а) и боковой (б) проекциях. Норма

Кардиография - рентгенологическое исследование полостей сердца после введения в них РКС. В настоящее время находит ограниченное применение в специализированных кардиохирургических стационарах.

Ангиопульмонография - рентгенологическое исследование легочной артерии и ее ветвей после введения в них РКС. Несмотря на высокую информативность, небезопасна для пациента, в связи с чем в последние годы предпочтение отдается компьютерно-томографической ангиографии.

Флебография - рентгенологическое исследование вен после введения в их просвет РКС.

Лимфография - рентгенологическое исследование лимфатических путей после введения в лимфатическое русло РКС.

Фистулография - рентгенологическое исследование свищевых ходов после их заполнения РКС.

Вульнерография - рентгенологическое исследование раневого канала после заполнения его РКС. Чаще применяется при слепых ранениях живота, когда другие методы исследования не позволяют установить, является ранение проникающим или непроникающим.

Кистография - контрастное рентгенологическое исследование кист различных органов с целью уточнения формы и размеров кисты, ее топографического расположения и состояния внутренней поверхности.

Дуктография - контрастное рентгенологическое исследование млечных протоков. Позволяет оценить морфологическое состояние протоков и выявить небольшие опухоли молочной железы с внутрипротоковым ростом, неразличимые на маммограммах.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ РЕНТГЕНОЛОГИЧЕСКОГО МЕТОДА

Голова

1. Аномалии и пороки развития костных структур головы.

2. Травма головы:

Диагностика переломов костей мозгового и лицевого отделов черепа;

Выявление инородных тел головы.

3. Опухоли головного мозга:

Диагностика патологических обызвествлений, характерных для опухолей;

Выявление сосудистой сети опухоли;

Диагностика вторичных гипертензионно-гидроцефальных изменений.

4. Заболевания сосудов головного мозга:

Диагностика аневризм и сосудистых мальформаций (артериальные аневризмы, артерио-венозные мальформации, артерио-синусные соустья и др.);

Диагностика стенозирующих и окклюзирующих заболеваний сосудов головного мозга и шеи (стенозы, тромбозы и др.).

5. Заболевания ЛОР-органов и органа зрения:

Диагностика опухолевых и неопухолевых заболеваний.

6. Заболевания височной кости:

Диагностика острых и хронических мастоидитов.

Грудь

1. Травма груди:

Диагностика повреждений грудной клетки;

Выявление жидкости, воздуха или крови в плевральной полости (пнев-мо-, гемоторакс);

Выявление ушибов легких;

Выявление инородных тел.

2. Опухоли легких и средостения:

Диагностика и дифференциальная диагностика доброкачественных и злокачественных опухолей;

Оценка состояния регионарных лимфатических узлов.

3. Туберкулез:

Диагностика различных форм туберкулеза;

Оценка состояния внутригрудных лимфатических узлов;

Дифференциальная диагностика с другими заболеваниями;

Оценка эффективности лечения.

4. Заболевания плевры, легких и средостения:

Диагностика всех форм пневмоний;

Диагностика плевритов, медиастинитов;

Диагностика тромбоэмболии легочной артерии;

Диагностика отека легких;

5. Исследование сердца и аорты:

Диагностика приобретенных и врожденных пороков сердца и аорты;

Диагностика повреждений сердца при травме груди и аорты;

Диагностика различных форм перикардитов;

Оценка состояния коронарного кровотока (коронарография);

Диагностика аневризм аорты.

Живот

1. Травма живота:

Выявление свободного газа и жидкости в полости живота;

Выявление инородных тел;

Установление проникающего характера ранения живота.

2. Исследование пищевода:

Диагностика опухолей;

Выявление инородных тел.

3. Исследование желудка:

Диагностика воспалительных заболеваний;

Диагностика язвенной болезни;

Диагностика опухолей;

Выявление инородных тел.

4. Исследование кишечника:

Диагностика кишечной непроходимости;

Диагностика опухолей;

Диагностика воспалительных заболеваний.

5. Исследование мочевых органов:

Определение аномалий и вариантов развития;

Мочекаменная болезнь;

Выявление стенотических и окклюзионных заболеваний почечных артерий (ангиография);

Диагностика стенотических заболеваний мочеточников, уретры;

Диагностика опухолей;

Выявление инородных тел;

Оценка экскреторной функции почек;

Контроль эффективности проводимого лечения.

Таз

1. Травма:

Диагностика переломов костей таза;

Диагностика разрывов мочевого пузыря, задней уретры и прямой кишки.

2. Врожденные и приобретенные деформации костей таза.

3. Первичные и вторичные опухоли костей таза и тазовых органов.

4. Сакроилеит.

5. Заболевания женских половых органов:

Оценка проходимости маточных труб.

Позвоночник

1. Аномалии и пороки развития позвоночника.

2. Травма позвоночника и спинного мозга:

Диагностика различных видов переломов и вывихов позвонков.

3. Врожденные и приобретенные деформации позвоночника.

4. Опухоли позвоночника и спинного мозга:

Диагностика первичных и метастатических опухолей костных структур позвоночника;

Диагностика экстрамедуллярных опухолей спинного мозга.

5. Дегенеративно-дистрофические изменения:

Диагностика спондилеза, спондилоартроза и остеохондроза и их осложнений;

Диагностика грыж межпозвоночных дисков;

Диагностика функциональной нестабильности и функционального блока позвонков.

6. Воспалительные заболевания позвоночника (специфические и неспецифические спондилиты).

7. Остеохондропатии, фиброзные остеодистрофии.

8. Денситометрия при системном остеопорозе.

Конечности

1. Травмы:

Диагностика переломов и вывихов конечностей;

Контроль эффективности проводимого лечения.

2. Врожденные и приобретенные деформации конечностей.

3. Остеохондропатии, фиброзные остеодистрофии; врожденные системные заболевания скелета.

4. Диагностика опухолей костей и мягких тканей конечностей.

5. Воспалительные заболевания костей и суставов.

6. Дегенеративно-дистрофические заболевания суставов.

7. Хронические заболевания суставов.

8. Стенозирующие и окклюзирующие заболевания сосудов конечностей.

Пневмония рентген требует в обязательном порядке. Без этого вида исследования вылечить человека удастся только чудом. Дело в том, что пневмония может быть вызвана различными возбудителями, которые поддаются только специальной терапии. Рентген помогает определить, подходит ли конкретному больному назначенное лечение. Если ситуация усугубляется, методы терапии корректируются.

Методы исследования рентгеном

Выделяют ряд способов исследования с помощью рентгена, их основное отличие - методика фиксирования полученного изображения:

  1. рентгенография - изображение фиксируется на специальной пленке прямым попаданием на нее рентгеновских лучей;
  2. электрорентгенография - картинка передается на специальные пластины, с которых можно перенести ее на бумагу;
  3. рентгеноскопия - метод, позволяющий получить изображение исследуемого органа на флюоресцентном экране;
  4. рентгенотелевизионное исследование - результат выводится на экран телевизора благодаря персональной теле-системе;
  5. флюорография - изображение получается путем фотографирования выведенной картинки на экран на фотопленку маленького формата;
  6. цифровая рентгенография - графическое изображение передается на цифровой носитель.

Более современные методы рентгенографии позволяют получить более качественное графическое изображение анатомических структур, что способствует более точному диагностированию, а значит, назначению правильного лечения.

Чтобы провести рентген некоторых органов человека используется метод искусственного контрастирования. Для этого исследуемый орган получает дозу специального вещества, поглощающего лучи рентгена.

Виды исследований рентгеном

В медицине показания к рентгенографии состоят в диагностики различных заболеваний, уточнения формы данных органов, места их расположения, состояния слизистых оболочек, перистальтики. Выделяют следующие виды рентгенографии:

  1. позвоночника;
  2. грудной клетки;
  3. периферические отделы скелета;
  4. зубов - ортопантомография;
  5. полости матки - метросальпингография ;
  6. молочной железы - маммография ;
  7. желудка и двенадцатиперстной кишки - дуоденография;
  8. желчного пузыря и желчевыводящих путей - холецистография и холеграфия соответственно;
  9. толстой кишки - ирригоскопия.

Показания и противопоказания к проведению исследования

Рентген может назначаться врачом для визуализации внутренних органов человека с целью установления возможных патологий. Существуют следующие показания к рентгенографии:

  1. необходимость установить поражения внутренних органов и скелета;
  2. проверка корректности установки трубок и катетеров;
  3. контроль эффективности и результативности курса терапии.

Как правило в медицинских заведениях, где сделать рентгенографию можно, пациент опрашивается на предмет возможных противопоказаний процедуры.

К ним относятся:

  1. персональная повышенная чувствительность к йоду;
  2. патология щитовидной железы;
  3. травмы почек или печени;
  4. туберкулез в активной форме;
  5. проблемы кардиологической и кровеносной систем;
  6. повышенное коагулирование крови ;
  7. тяжелое состояние пациента;
  8. состояние беременности.

Преимущества и недостатки способа

Главными достоинствами рентгенологического исследования называют доступность способа и его простоту. Ведь в современном мире есть много учреждений где можно сделать рентген. Это преимущественно не требует какой-либо специальной подготовки, дешевизна и наличие снимков, с которыми можно обратиться за консультацией к нескольким докторам в разных учреждениях.

Минусами рентгена называют получение статичной картинки, облучение, в некоторых случаях требуется введение контраста. Качество снимков иногда, особенно на устаревшем оборудовании, не позволяет эффективно достичь цели исследования. Поэтому рекомендуется искать учреждение, где сделать цифровой рентген, который на сегодня является наиболее современным способом исследования и показывает наивысшую степень информативности.

В случае, если ввиду указанных недостатков рентгенографии, достоверно не будет выявлена потенциальная патология, могут назначаться дополнительные исследования, способные визуализировать работу органа в динамике.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама