CLOPOTUL

Sunt cei care citesc aceasta stire inaintea ta.
Abonați-vă pentru a primi cele mai recente articole.
E-mail
Nume
Nume de familie
Cum ți-ar plăcea să citești Clopoțelul
Fără spam

derivate complexe. Derivată logaritmică.
Derivat de putere - functie exponentiala

Continuăm să ne îmbunătățim tehnica de diferențiere. În această lecție, vom consolida materialul acoperit, vom lua în considerare derivate mai complexe și, de asemenea, ne vom familiariza cu noi trucuri și trucuri pentru găsirea derivatei, în special, cu derivata logaritmică.

Pentru acei cititori care nivel scăzut pregătire, consultați articol Cum să găsesc derivatul? Exemple de soluții ceea ce vă va permite să vă ridicați abilitățile aproape de la zero. În continuare, trebuie să studiați cu atenție pagina Derivată a unei funcții compuse, înțelegeți și rezolvați toate exemplele pe care le-am dat. Această lecție logic al treilea la rând, iar după ce îl stăpânești, vei diferenția cu încredere funcții destul de complexe. Nu este de dorit să rămâneți la poziția „Unde altundeva? Și este suficient!”, deoarece toate exemplele și soluțiile sunt preluate din realitate lucrări de controlși des întâlnite în practică.

Să începem cu repetarea. La lecție Derivată a unei funcții compuse am luat în considerare o serie de exemple cu comentarii detaliate. În timpul studiului calculului diferenţial şi a altor secţiuni analiză matematică- va trebui să diferențiezi foarte des și nu este întotdeauna convenabil (și nu întotdeauna necesar) să pictezi exemple în detaliu. Prin urmare, vom exersa în găsirea orală a derivaților. Cei mai potriviți „candidați” pentru aceasta sunt derivate ale celei mai simple funcții complexe, de exemplu:

Conform regulii de diferenţiere a unei funcţii complexe :

Când studiați alte subiecte de matan în viitor, o înregistrare atât de detaliată nu este de cele mai multe ori necesară, se presupune că studentul este capabil să găsească derivate similare pe pilotul automat. Să ne imaginăm că la ora 3 dimineața a sunat telefonul, iar o voce plăcută a întrebat: „Care este derivata tangentei a doi x?”. Aceasta ar trebui să fie urmată de un răspuns aproape instantaneu și politicos: .

Primul exemplu va fi imediat destinat decizie independentă.

Exemplul 1

Găsiți pe cale orală următoarele derivate, într-un singur pas, de exemplu: . Pentru a finaliza sarcina, trebuie doar să utilizați tabel de derivate ale funcțiilor elementare(dacă nu și-a amintit deja). Dacă aveți dificultăți, vă recomand să recitiți lecția Derivată a unei funcții compuse.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Răspunsuri la sfârșitul lecției

Derivate complexe

După pregătirea preliminară a artileriei, exemplele cu 3-4-5 atașamente de funcții vor fi mai puțin înfricoșătoare. Poate că următoarele două exemple le vor părea complicate unora, dar dacă sunt înțelese (cineva suferă), atunci aproape orice altceva din calculul diferențial va părea ca o glumă de copil.

Exemplul 2

Aflați derivata unei funcții

După cum sa menționat deja, atunci când găsiți derivata unei funcții complexe, în primul rând, este necesar dreaptaÎNȚELEGE INVESTIȚII. În cazurile în care există îndoieli, vă reamintesc un truc util: luăm valoarea experimentală „x”, de exemplu, și încercăm (psihic sau pe o schiță) să înlocuim valoare datăîntr-o expresie teribilă.

1) Mai întâi trebuie să calculăm expresia, astfel încât suma este cea mai adâncă cuibărit.

2) Apoi trebuie să calculați logaritmul:

4) Apoi cubează cosinusul:

5) La al cincilea pas, diferența:

6) Și în sfârșit, funcția cea mai exterioară este rădăcina pătrată:

Formula de diferențiere a funcției complexe sunt aplicate în ordine inversă, de la funcția cea mai exterioară la cea mai interioară. Noi decidem:

Se pare că nu este nicio eroare...

(1) Luăm derivata rădăcinii pătrate.

(2) Luăm derivata diferenței folosind regula

(3) Derivata tripluului este egala cu zero. În al doilea termen, luăm derivata gradului (cubul).

(4) Luăm derivata cosinusului.

(5) Luăm derivata logaritmului.

(6) În cele din urmă, luăm derivatul celui mai adânc cuibărit.

Poate părea prea dificil, dar acesta nu este cel mai brutal exemplu. Luați, de exemplu, colecția lui Kuznetsov și veți aprecia tot farmecul și simplitatea derivatului analizat. Am observat că le place să dea un lucru similar la examen pentru a verifica dacă studentul înțelege cum să găsească derivata unei funcții complexe sau nu înțelege.

Următorul exemplu este pentru o soluție de sine stătătoare.

Exemplul 3

Aflați derivata unei funcții

Sugestie: Mai întâi aplicăm regulile de liniaritate și regula de diferențiere a produsului

Soluție completă și răspuns la sfârșitul lecției.

Este timpul să trecem la ceva mai compact și mai frumos.
Nu este neobișnuit pentru o situație în care produsul nu a două, ci a trei funcții este dat într-un exemplu. Cum să găsiți derivata produsului a trei factori?

Exemplul 4

Aflați derivata unei funcții

În primul rând, ne uităm, dar este posibil să transformăm produsul a trei funcții într-un produs a două funcții? De exemplu, dacă am avea două polinoame în produs, atunci am putea deschide parantezele. Dar în acest exemplu, toate funcțiile sunt diferite: grad, exponent și logaritm.

În astfel de cazuri, este necesar rand pe rand aplica regula de diferentiere a produselor de două ori

Trucul este că pentru „y” notăm produsul a două funcții: , iar pentru „ve” - logaritmul:. De ce se poate face asta? Este - acesta nu este produsul a doi factori și regula nu funcționează?! Nu este nimic complicat:

Acum rămâne să aplici regula a doua oară la paranteză:

Puteți încă perverti și să scoateți ceva din paranteze, dar în acest caz este mai bine să lăsați răspunsul în această formă - va fi mai ușor de verificat.

Exemplul de mai sus poate fi rezolvat în al doilea mod:

Ambele soluții sunt absolut echivalente.

Exemplul 5

Aflați derivata unei funcții

Acesta este un exemplu pentru o soluție independentă, în probă se rezolvă în primul mod.

Luați în considerare exemple similare cu fracții.

Exemplul 6

Aflați derivata unei funcții

Aici puteți merge în mai multe moduri:

Sau cam asa:

Dar soluția poate fi scrisă mai compact dacă, în primul rând, folosim regula de diferențiere a coeficientului , luând pentru întregul numărător:

În principiu, exemplul este rezolvat, iar dacă este lăsat în această formă, nu va fi o greșeală. Dar dacă aveți timp, este întotdeauna indicat să verificați o ciornă, dar este posibil să simplificați răspunsul? Aducem expresia numărătorului la numitor comunși scăpați de fracția cu trei etaje:

Dezavantajul simplificărilor suplimentare este că există riscul de a greși nu la găsirea unei derivate, ci la transformări școlare banale. Pe de altă parte, profesorii resping adesea sarcina și cer să „aducă în minte” derivatul.

Un exemplu mai simplu pentru o soluție do-it-yourself:

Exemplul 7

Aflați derivata unei funcții

Continuăm să stăpânim tehnicile de găsire a derivatei, iar acum vom lua în considerare un caz tipic când se propune un logaritm „teribil” pentru diferențiere

Exemplul 8

Aflați derivata unei funcții

Aici puteți parcurge un drum lung, folosind regula de diferențiere a unei funcții complexe:

Dar chiar primul pas te cufundă imediat în deznădejde - trebuie să iei o derivată neplăcută de un grad fracționar și apoi și dintr-o fracție.

De aceea inainte de cum să luați derivatul logaritmului „fantezist”, acesta este anterior simplificat folosind proprietăți școlare binecunoscute:



! Dacă aveți un caiet de practică la îndemână, copiați aceste formule chiar acolo. Dacă nu ai un caiet, desenează-le pe o foaie de hârtie, deoarece restul exemplelor lecției se vor învârti în jurul acestor formule.

Soluția în sine poate fi formulată astfel:

Să transformăm funcția:

Găsim derivata:

Transformarea preliminară a funcției în sine a simplificat foarte mult soluția. Astfel, atunci când se propune un logaritm similar pentru diferențiere, este întotdeauna recomandabil să-l „defalci”.

Și acum câteva exemple simple pentru o soluție independentă:

Exemplul 9

Aflați derivata unei funcții

Exemplul 10

Aflați derivata unei funcții

Toate transformările și răspunsurile la sfârșitul lecției.

derivată logaritmică

Dacă derivatul logaritmilor este o muzică atât de dulce, atunci se pune întrebarea, este posibil în unele cazuri să se organizeze logaritmul în mod artificial? Poate sa! Și chiar necesar.

Exemplul 11

Aflați derivata unei funcții

Exemple similare pe care le-am luat în considerare recent. Ce să fac? Se poate aplica succesiv regula de diferențiere a coeficientului, iar apoi regula de diferențiere a produsului. Dezavantajul acestei metode este că obțineți o fracțiune uriașă de trei etaje, cu care nu doriți să vă ocupați deloc.

Dar în teorie și practică există un lucru atât de minunat precum derivata logaritmică. Logaritmii pot fi organizați artificial prin „atârnând” pe ambele părți:

Notă : deoarece funcția poate lua valori negative, atunci, în general, trebuie să utilizați module: , care dispar ca urmare a diferențierii. Cu toate acestea, designul actual este, de asemenea, acceptabil, unde implicit complex valorile. Dar dacă cu toată rigoarea, atunci în ambele cazuri este necesar să se facă o rezervă că.

Acum trebuie să „descompuneți” cât mai mult posibil logaritmul din partea dreaptă (formule în fața ochilor?). Voi descrie acest proces în detaliu:

Să începem cu diferențierea.
Încheiem ambele părți cu o lovitură:

Derivatul din partea dreaptă este destul de simplu, nu îl voi comenta, pentru că dacă citiți acest text, ar trebui să îl puteți gestiona cu încredere.

Dar partea stângă?

Pe partea stângă avem functie complexa . Prevăd întrebarea: „De ce, există o literă „y” sub logaritm?”.

Faptul este că această „o litera y” - ESTE O FUNCȚIE în sine(dacă nu este foarte clar, consultați articolul Derivată a unei funcții specificată implicit). Prin urmare, logaritmul este o funcție externă, iar „y” este o funcție internă. Și folosim regula de diferențiere a funcției compuse :

În partea stângă, ca prin farmec, avem un derivat. În plus, conform regulii proporției, aruncăm „y” de la numitorul părții stângi în partea de sus a părții drepte:

Și acum ne amintim despre ce fel de „joc”-funcție am vorbit la diferențiere? Să ne uităm la starea:

Răspuns final:

Exemplul 12

Aflați derivata unei funcții

Acesta este un exemplu de do-it-yourself. Exemplu de proiect al unui exemplu de acest tip la sfârșitul lecției.

Cu ajutorul derivatei logaritmice a fost posibil să se rezolve oricare dintre exemplele nr. 4-7, un alt lucru este că funcțiile de acolo sunt mai simple și, poate, utilizarea derivatei logaritmice nu este foarte justificată.

Derivată a funcției exponențiale

Nu am luat în considerare această funcție încă. O funcție exponențială este o funcție care are iar gradul și baza depind de "x". Un exemplu clasic care vă va fi dat în orice manual sau la orice prelegere:

Cum se află derivata unei funcții exponențiale?

Este necesar să se folosească tehnica tocmai considerată - derivata logaritmică. Agățăm logaritmi pe ambele părți:

De regulă, gradul este scos de sub logaritmul din partea dreaptă:

Ca urmare, în partea dreaptă avem un produs a două funcții, care va fi diferențiat conform formulei standard .

Găsim derivata, pentru aceasta includem ambele părți sub linii:

Următorii pași sunt simpli:

In cele din urma:

Dacă o transformare nu este complet clară, vă rugăm să recitiți cu atenție explicațiile din Exemplul 11.

În sarcinile practice, funcția exponențială va fi întotdeauna mai complicată decât exemplul de prelegere considerat.

Exemplul 13

Aflați derivata unei funcții

Folosim derivata logaritmică.

În partea dreaptă avem o constantă și produsul a doi factori - „x” și „logaritmul logaritmului lui x” (un alt logaritm este imbricat sub logaritm). Când diferențiem o constantă, așa cum ne amintim, este mai bine să o scoateți imediat din semnul derivatului, astfel încât să nu stea în cale; și, bineînțeles, aplicați regula familiară :


Pe care am analizat cele mai simple derivate și, de asemenea, ne-am familiarizat cu regulile de diferențiere și unele tehnici găsirea de derivate. Astfel, dacă nu ești foarte bun cu derivatele de funcții sau unele puncte din acest articol nu sunt în totalitate clare, atunci citește mai întâi lecția de mai sus. Vă rugăm să acordați o dispoziție serioasă - materialul nu este ușor, dar voi încerca totuși să îl prezint simplu și clar.

În practică, trebuie să te ocupi de derivata unei funcții complexe foarte des, chiar aș spune aproape întotdeauna, când ți se dau sarcini să găsești derivate.

Ne uităm în tabel la regula (nr. 5) pentru diferențierea unei funcții complexe:

Înțelegem. În primul rând, să aruncăm o privire asupra notației. Aici avem două funcții - și , iar funcția, la figurat vorbind, este imbricată în funcția . O funcție de acest fel (când o funcție este imbricată în alta) se numește funcție complexă.

Voi apela funcția functie externa, și funcția – funcție interioară (sau imbricată)..

! Aceste definiții nu sunt teoretice și nu ar trebui să apară în proiectarea finală a sarcinilor. Folosesc expresiile informale „funcție externă”, funcție „internă” doar pentru a vă facilita înțelegerea materialului.

Pentru a clarifica situația, luați în considerare:

Exemplul 1

Aflați derivata unei funcții

Sub sinus, nu avem doar litera „x”, ci întreaga expresie, deci găsirea imediată a derivatei din tabel nu va funcționa. De asemenea, observăm că este imposibil să aplicați primele patru reguli aici, pare să existe o diferență, dar adevărul este că este imposibil să „sfiți” sinusul:

LA acest exemplu deja din explicațiile mele este intuitiv clar că o funcție este o funcție complexă, iar polinomul este o funcție internă (încorporare) și o funcție externă.

Primul pas, care trebuie efectuată atunci când găsirea derivatei unei funcții complexe este să înțelegeți ce funcție este internă și care este externă.

În cazul exemplelor simple, pare clar că un polinom este imbricat sub sinus. Dar dacă nu este evident? Cum să determinați exact ce funcție este externă și care este internă? Pentru a face acest lucru, vă propun să folosiți următoarea tehnică, care poate fi efectuată mental sau pe ciornă.

Să ne imaginăm că trebuie să calculăm valoarea expresiei cu un calculator (în loc de unul, poate exista orice număr).

Ce calculăm mai întâi? Pentru inceput va trebui să efectuați următoarea acțiune: , deci polinomul va fi o funcție internă:

În al doilea rând va trebui să găsiți, deci sinusul - va fi o funcție externă:

După ce noi A INTELEGE cu funcții interioare și exterioare, este timpul să aplici regula de diferențiere a funcției compuse .

Începem să decidem. De la lecție Cum să găsesc derivatul? ne amintim că proiectarea soluției oricărei derivate începe întotdeauna astfel - includem expresia între paranteze și punem o contur în dreapta sus:

Primul găsiți derivata funcției externe (sinus), uitați-vă la tabelul derivatelor functii elementare si observati ca. Toate formulele tabelare sunt aplicabile chiar dacă „x” este înlocuit cu o expresie complexă, în acest caz:

Rețineți că funcția interioară nu s-a schimbat, nu o atingem.

Ei bine, este destul de evident că

Rezultatul aplicării formulei curat arata asa:

Factorul constant este de obicei plasat la începutul expresiei:

Dacă există vreo neînțelegere, notați decizia pe hârtie și citiți din nou explicațiile.

Exemplul 2

Aflați derivata unei funcții

Exemplul 3

Aflați derivata unei funcții

Ca întotdeauna, scriem:

Ne dăm seama unde avem o funcție externă și unde este una internă. Pentru a face acest lucru, încercăm (mental sau pe o schiță) să calculăm valoarea expresiei pentru . Ce trebuie făcut mai întâi? În primul rând, trebuie să calculați cu ce baza este egală:, ceea ce înseamnă că polinomul este funcția internă:

Și, numai atunci se realizează exponențiarea, prin urmare, funcția de putere este o funcție externă:

Conform formulei , mai întâi trebuie să găsiți derivata funcției externe, în acest caz, gradul. Căutăm formula dorită în tabel:. Repetăm ​​din nou: orice formulă tabelară este valabilă nu numai pentru „x”, ci și pentru o expresie complexă. Astfel, rezultatul aplicării regulii de diferențiere a unei funcții complexe Următorul:

Subliniez din nou că atunci când luăm derivata funcției exterioare, funcția interioară nu se modifică:

Acum rămâne să găsiți o derivată foarte simplă a funcției interioare și să „pieptănați” puțin rezultatul:

Exemplul 4

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Pentru a consolida înțelegerea derivatei unei funcții complexe, voi da un exemplu fără comentarii, încercați să vă dați seama singur, raționați, unde este externul și unde este funcția internă, de ce sarcinile sunt rezolvate astfel?

Exemplul 5

a) Aflați derivata unei funcții

b) Aflați derivata funcției

Exemplul 6

Aflați derivata unei funcții

Aici avem o rădăcină, iar pentru a diferenția rădăcina, aceasta trebuie reprezentată ca un grad. Astfel, mai întâi aducem funcția în forma potrivită pentru diferențiere:

Analizând funcția, ajungem la concluzia că suma a trei termeni este o funcție internă, iar exponențiația este o funcție externă. Aplicam regula de diferentiere a unei functii complexe :

Gradul este din nou reprezentat ca un radical (rădăcină), iar pentru derivata funcției interne, aplicăm o regulă simplă de diferențiere a sumei:

Gata. De asemenea, puteți aduce expresia la un numitor comun între paranteze și scrieți totul ca o fracție. Este frumos, desigur, dar atunci când se obțin derivate lungi greoaie, este mai bine să nu faci acest lucru (este ușor să te confuzi, să faci o greșeală inutilă și profesorul va fi incomod să verifice).

Exemplul 7

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Este interesant de observat că uneori, în loc de regula de diferențiere a unei funcții complexe, se poate folosi regula de diferențiere a unui coeficient. , dar o astfel de soluție va arăta ca o perversiune neobișnuită. Iată un exemplu tipic:

Exemplul 8

Aflați derivata unei funcții

Aici puteți folosi regula de diferențiere a coeficientului , dar este mult mai profitabil să găsim derivata prin regula de diferențiere a unei funcții complexe:

Pregătim funcția pentru diferențiere - scoatem semnul minus al derivatei și ridicăm cosinusul la numărător:

Cosinusul este o funcție internă, exponențiația este o funcție externă.
Să folosim regula noastră :

Găsim derivata funcției interioare, resetăm cosinusul înapoi în jos:

Gata. În exemplul luat în considerare, este important să nu vă confundați în semne. Apropo, încercați să o rezolvați cu regula , răspunsurile trebuie să se potrivească.

Exemplul 9

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Până acum, am luat în considerare cazurile în care am avut un singur cuib într-o funcție complexă. În sarcinile practice, puteți găsi adesea derivate, în care, precum păpușile de cuibărit, una în cealaltă, 3 sau chiar 4-5 funcții sunt imbricate deodată.

Exemplul 10

Aflați derivata unei funcții

Înțelegem atașamentele acestei funcții. Încercăm să evaluăm expresia folosind valoarea experimentală. Cum am conta pe un calculator?

Mai întâi trebuie să găsiți, ceea ce înseamnă că arcsinusul este cel mai adânc cuib:

Acest arcsinus al unității ar trebui apoi să fie la pătrat:

Și, în sfârșit, îi ridicăm pe cei șapte la putere:

Adică, în acest exemplu avem trei funcții diferite și două imbricare, în timp ce funcția cea mai interioară este arcsinus, iar funcția cea mai exterioară este funcția exponențială.

Începem să decidem

Conform regulii mai întâi trebuie să luați derivata funcției exterioare. Ne uităm la tabelul derivatelor și găsim derivata funcției exponențiale: Singura diferență este că în loc de „X” avem expresie complexă, ceea ce nu invalidează valabilitatea acestei formule. Deci, rezultatul aplicării regulii de diferențiere a unei funcții complexe Următorul.

Este absolut imposibil să rezolvi probleme fizice sau exemple în matematică fără cunoștințe despre derivată și metode de calcul. Derivata este unul dintre cele mai importante concepte ale analizei matematice. Acest tema fundamentală am decis să dedicăm articolul de astăzi. Ce este o derivată, care este semnificația sa fizică și geometrică, cum se calculează derivata unei funcții? Toate aceste întrebări pot fi combinate într-una singură: cum să înțelegeți derivatul?

Sensul geometric și fizic al derivatului

Să existe o funcție f(x) , dat într-un anumit interval (a,b) . Punctele x și x0 aparțin acestui interval. Când x se schimbă, funcția în sine se schimbă. Schimbarea argumentului - diferența valorilor sale x-x0 . Această diferență este scrisă ca delta x și se numește increment de argument. Modificarea sau creșterea unei funcții este diferența dintre valorile funcției în două puncte. Definiție derivată:

Derivata unei funcții într-un punct este limita raportului dintre incrementul funcției la un punct dat și incrementul argumentului atunci când acesta din urmă tinde spre zero.

Altfel se poate scrie asa:

Ce rost are să găsești o astfel de limită? Dar care:

derivata unei funcții într-un punct este egală cu tangentei unghiului dintre axa OX și tangentei la graficul funcției într-un punct dat.


sens fizic derivat: derivata în timp a traseului este egală cu viteza mișcării rectilinie.

Într-adevăr, încă din timpul școlii, toată lumea știe că viteza este o cale privată. x=f(t) si timpul t . Viteza medie pe o anumită perioadă de timp:

Pentru a afla viteza de mișcare la un moment dat t0 trebuie să calculați limita:

Prima regulă: scoateți constanta

Constanta poate fi scoasă din semnul derivatei. Mai mult, trebuie făcut. Când rezolvați exemple la matematică, luați ca regulă - dacă puteți simplifica expresia, asigurați-vă că simplificați .

Exemplu. Să calculăm derivata:

Regula a doua: derivata sumei functiilor

Derivata sumei a doua functii este egala cu suma derivatelor acestor functii. Același lucru este valabil și pentru derivata diferenței de funcții.

Nu vom da o demonstrație a acestei teoreme, ci mai degrabă vom lua în considerare un exemplu practic.

Aflați derivata unei funcții:

Regula trei: derivata produsului de funcții

Derivata produsului a doua functii diferentiabile se calculeaza prin formula:

Exemplu: găsiți derivata unei funcții:

Soluţie:

Aici este important de spus despre calculul derivatelor funcțiilor complexe. Derivata unei functii complexe este egala cu produsul derivatei acestei functii fata de argumentul intermediar cu derivata argumentului intermediar fata de variabila independenta.

În exemplul de mai sus, întâlnim expresia:

În acest caz, argumentul intermediar este de 8x față de a cincea putere. Pentru a calcula derivata unei astfel de expresii, luăm în considerare mai întâi derivata funcției externe față de argumentul intermediar și apoi înmulțim cu derivata argumentului intermediar însuși față de variabila independentă.

Regula a patra: derivata coeficientului a două funcții

Formula pentru determinarea derivatei unui cât de două funcții:

Am încercat să vorbim despre derivate pentru manechine de la zero. Acest subiect nu este atât de simplu pe cât pare, așa că fiți atenți: există adesea capcane în exemple, așa că aveți grijă când calculați derivatele.

Cu orice întrebare pe acest subiect și alte subiecte, puteți contacta serviciul studenți. În scurt timp, vă vom ajuta să rezolvați cel mai dificil control și să vă ocupați de sarcini, chiar dacă nu v-ați mai ocupat niciodată de calculul derivatelor.

În cazul în care un g(X) și f(u) sunt funcții diferențiabile ale argumentelor lor, respectiv, la puncte Xși u= g(X), atunci funcția complexă este și ea diferențiabilă la punct X si se gaseste prin formula

O greșeală tipică în rezolvarea problemelor pe derivate este transferul automat al regulilor de diferențiere a funcțiilor simple de funcții complexe. Vom învăța să evităm această greșeală.

Exemplul 2 Aflați derivata unei funcții

Solutie gresita: calculati logaritmul natural fiecare termen între paranteze și căutați suma derivatelor:

Decizia corectă: iarăși stabilim unde este „mărul” și unde este „carnea tocată”. Aici, logaritmul natural al expresiei dintre paranteze este „mărul”, adică funcția de pe argumentul intermediar u, iar expresia dintre paranteze este „carne tocată”, adică un argument intermediar u prin variabila independenta X.

Apoi (folosind formula 14 din tabelul derivatelor)

În multe probleme reale, expresia cu logaritmul este ceva mai complicată, motiv pentru care există o lecție

Exemplul 3 Aflați derivata unei funcții

Solutie gresita:

Decizia corectă.Încă o dată, stabilim unde este „mărul” și unde este „carnea tocată”. Aici, cosinusul expresiei dintre paranteze (formula 7 din tabelul derivatelor) este „măr”, se gătește în modul 1, afectându-l doar, iar expresia dintre paranteze (derivata gradului - numărul 3 în tabelul derivatelor) este „carne tocată”, se gătește în modul 2, afectându-l doar pe acesta. Și, ca întotdeauna, conectăm două derivate cu un semn de produs. Rezultat:

Derivat de complex funcţie logaritmică- o sarcină frecventă pe teste, așa că vă recomandăm insistent să vizitați lecția „Derivatul unei funcții logaritmice”.

Primele exemple au fost pentru funcții complexe, în care argumentul intermediar asupra variabilei independente era o funcție simplă. Dar în sarcinile practice este adesea necesar să se găsească derivata unei funcții complexe, unde argumentul intermediar este fie el însuși o funcție complexă, fie conține o astfel de funcție. Ce să faci în astfel de cazuri? Găsiți derivate ale unor astfel de funcții folosind tabele și reguli de diferențiere. Când se găsește derivata argumentului intermediar, aceasta este pur și simplu substituită în locul potrivit în formulă. Mai jos sunt două exemple despre cum se face acest lucru.

În plus, este util să știți următoarele. Dacă o funcţie complexă poate fi reprezentată ca un lanţ de trei funcţii

atunci derivata sa ar trebui găsită ca produsul derivatelor fiecăreia dintre aceste funcții:

Multe dintre temele dvs. ar putea necesita să deschideți tutoriale în ferestre noi. Acțiuni cu puteri și rădăciniși Acțiuni cu fracții .

Exemplul 4 Aflați derivata unei funcții

Aplicam regula de diferentiere a unei functii complexe, fara a uita ca in produsul rezultat al derivatelor, argumentul intermediar fata de variabila independenta X nu se schimba:

Pregătim al doilea factor al produsului și aplicăm regula de diferențiere a sumei:

Al doilea termen este rădăcina, deci

Astfel, s-a obținut că argumentul intermediar, care este suma, conține o funcție complexă ca unul dintre termeni: exponențiația este o funcție complexă, iar ceea ce este ridicat la o putere este un argument intermediar printr-o variabilă independentă. X.

Prin urmare, aplicăm din nou regula de diferențiere a unei funcții complexe:

Transformăm gradul primului factor într-o rădăcină și diferențiind al doilea factor, nu uităm că derivata constantei este egală cu zero:

Acum putem găsi derivata argumentului intermediar necesară pentru a calcula derivata funcției complexe cerute în starea problemei y:

Exemplul 5 Aflați derivata unei funcții

În primul rând, folosim regula diferențierii sumei:

Obțineți suma derivatelor a două funcții complexe. Găsiți primul:

Aici, ridicarea sinusului la o putere este o funcție complexă, iar sinusul însuși este un argument intermediar în variabila independentă X. Prin urmare, folosim regula de diferențiere a unei funcții complexe, pe parcurs scotând multiplicatorul din paranteze :

Acum găsim al doilea termen dintre cei care formează derivata funcției y:

Aici, ridicarea cosinusului la o putere este o funcție complexă f, iar cosinusul însuși este un argument intermediar față de variabila independentă X. Din nou, folosim regula de diferențiere a unei funcții complexe:

Rezultatul este derivata necesară:

Tabel de derivate ale unor funcții complexe

Pentru funcțiile complexe, bazate pe regula de diferențiere a unei funcții complexe, formula pentru derivata unei funcții simple ia o formă diferită.

1. Derivată a unei funcții de putere complexe, unde u X
2. Derivat al rădăcinii expresiei
3. Derivata functiei exponentiale
4. Caz special al funcției exponențiale
5. Derivată a unei funcții logaritmice cu o bază pozitivă arbitrară A
6. Derivata unei functii logaritmice complexe, unde u este o funcție diferențiabilă a argumentului X
7. Derivat sinus
8. Derivat de cosinus
9. Derivată tangentă
10. Derivat de cotangente
11. Derivată a arcsinusului
12. Derivată a arccosinusului
13. Derivată de arc tangente
14. Derivată a tangentei inverse

După pregătirea preliminară a artileriei, exemplele cu 3-4-5 atașamente de funcții vor fi mai puțin înfricoșătoare. Poate că următoarele două exemple le vor părea complicate unora, dar dacă sunt înțelese (cineva suferă), atunci aproape orice altceva din calculul diferențial va părea ca o glumă de copil.

Exemplul 2

Aflați derivata unei funcții

După cum sa menționat deja, atunci când găsiți derivata unei funcții complexe, în primul rând, este necesar dreaptaÎNȚELEGE INVESTIȚII. În cazurile în care există îndoieli, vă reamintesc un truc util: luăm valoarea experimentală „x”, de exemplu, și încercăm (mental sau pe ciornă) să substituim această valoare în „expresia groaznică”.

1) Mai întâi trebuie să calculăm expresia, astfel încât suma este cea mai adâncă cuibărit.

2) Apoi trebuie să calculați logaritmul:

4) Apoi cubează cosinusul:

5) La al cincilea pas, diferența:

6) Și în sfârșit, funcția cea mai exterioară este rădăcina pătrată:

Formula de diferențiere a funcției complexe sunt aplicate în ordine inversă, de la funcția cea mai exterioară la cea mai interioară. Noi decidem:

Pare să nu aibă erori:

1) Luăm derivata rădăcinii pătrate.

2) Luăm derivata diferenței folosind regula

3) Derivata tripluului este egala cu zero. În al doilea termen, luăm derivata gradului (cubul).

4) Luăm derivata cosinusului.

6) Și, în sfârșit, luăm derivatul celui mai adânc cuibărit.

Poate părea prea dificil, dar acesta nu este cel mai brutal exemplu. Luați, de exemplu, colecția lui Kuznetsov și veți aprecia tot farmecul și simplitatea derivatului analizat. Am observat că le place să dea un lucru similar la examen pentru a verifica dacă studentul înțelege cum să găsească derivata unei funcții complexe sau nu înțelege.

Următorul exemplu este pentru o soluție de sine stătătoare.

Exemplul 3

Aflați derivata unei funcții

Sugestie: Mai întâi aplicăm regulile de liniaritate și regula de diferențiere a produsului

Soluție completă și răspuns la sfârșitul lecției.

Este timpul să trecem la ceva mai compact și mai frumos.
Nu este neobișnuit pentru o situație în care produsul nu a două, ci a trei funcții este dat într-un exemplu. Cum să găsiți derivata produsului a trei factori?

Exemplul 4

Aflați derivata unei funcții

În primul rând, ne uităm, dar este posibil să transformăm produsul a trei funcții într-un produs a două funcții? De exemplu, dacă am avea două polinoame în produs, atunci am putea deschide parantezele. Dar în acest exemplu, toate funcțiile sunt diferite: grad, exponent și logaritm.

În astfel de cazuri, este necesar rand pe rand aplica regula de diferentiere a produselor de două ori

Trucul este că pentru „y” notăm produsul a două funcții: , iar pentru „ve” - logaritmul:. De ce se poate face asta? Este - acesta nu este produsul a doi factori și regula nu funcționează?! Nu este nimic complicat:


Acum rămâne să aplici regula a doua oară la paranteză:

Puteți încă perverti și să scoateți ceva din paranteze, dar în acest caz este mai bine să lăsați răspunsul în această formă - va fi mai ușor de verificat.

Exemplul de mai sus poate fi rezolvat în al doilea mod:

Ambele soluții sunt absolut echivalente.

Exemplul 5

Aflați derivata unei funcții

Acesta este un exemplu pentru o soluție independentă, în probă se rezolvă în primul mod.

Luați în considerare exemple similare cu fracții.

Exemplul 6

Aflați derivata unei funcții

Aici puteți merge în mai multe moduri:

Sau cam asa:

Dar soluția poate fi scrisă mai compact dacă, în primul rând, folosim regula de diferențiere a coeficientului , luând pentru întregul numărător:

În principiu, exemplul este rezolvat, iar dacă este lăsat în această formă, nu va fi o greșeală. Dar dacă aveți timp, este întotdeauna indicat să verificați o ciornă, dar este posibil să simplificați răspunsul?

Aducem expresia numărătorului la un numitor comun și scăpăm de fracția cu trei etaje:

Dezavantajul simplificărilor suplimentare este că există riscul de a greși nu la găsirea unei derivate, ci la transformări școlare banale. Pe de altă parte, profesorii resping adesea sarcina și cer să „aducă în minte” derivatul.

Un exemplu mai simplu pentru o soluție do-it-yourself:

Exemplul 7

Aflați derivata unei funcții

Continuăm să stăpânim tehnicile de găsire a derivatei, iar acum vom lua în considerare un caz tipic când se propune un logaritm „teribil” pentru diferențiere

CLOPOTUL

Sunt cei care citesc aceasta stire inaintea ta.
Abonați-vă pentru a primi cele mai recente articole.
E-mail
Nume
Nume de familie
Cum ți-ar plăcea să citești Clopoțelul
Fără spam